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Abstract

The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS
suite solves Maxwell’s equations using finite-element techniques on unstructured meshes.
This document provides user-specific information to facilitate the use of the code for appli-
cations of interest.
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EMPHASIS UTDEM User Guide

1 Introduction

EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetics (UTDEM) is a general-
purpose code for solving Maxwell’s equations on arbitrary, unstructured tetrahedral meshes.
The geometries and the meshes thereof are limited only by the patience of the user in meshing
and by the available computing resources for the solution. UTDEM solves Maxwell’s equa-
tions using finite-element method (FEM) techniques on tetrahedral elements using vector,
edge-conforming basis functions [14].

EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UT-
DEM PIC) is a superset of the capabilities found in UTDEM. It adds the capability to
simulate systems in which the effects of free charge are important and need to be treated in
a self-consistent manner. This is done by integrating the equations of motion for macropar-
ticles (a macroparticle is an object that represents a large number of real physical particles,
all with the same position and momentum) being accelerated by the electromagnetic forces
upon the particle (Lorentz force). The motion of these particles results in a current, which
is a source for the fields in Maxwell’s equations.

1.1 UTDEM Simulation Process

The UTDEM simulation process is shown in Fig. 1. The geometry of interest must first
be modeled and meshed using appropriate software. I-DEAS is one option that provides
both, but successful meshes have been generated using CUBIT and ICEM CFD Tetra as
well. Regardless of how the mesh is generated it must ultimately be written or converted to
EXODUSII [9] format. CUBIT and ICEM do this directly as does I-DEAS with the addition
of a special 3rd party feature. However, certain features of UTDEM require sets of nodes
(nodesets), edges (edgesets), or faces (sidesets) to be defined. In particular, edgesets are not
a part of the EXODUSII standard. The creation of these “edgesets” along with nodesets and
sidesets are handled along with the conversion from I-DEAS universal format to EXODUSII
format by the preprocessing step PREP [5]. Use of virtual edgesets (described later) avoids
the requirement to process edgesets through PREP. Further discussion of the use of PREP
is found in Appendix A.

The actual input required for UTDEM consists of only two files, the Genesis file containing
the mesh and the problem-specific input file. “Genesis” normally describes a mesh description
file in EXODUSII format containing mesh only, no data.
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Figure 1. The UTDEM simulation process.

A critical aspect of the mesh for UTDEM is that boundary conditions are described by
EXODUSII sidesets, edgesets, or nodesets. These requirements will be described later as
each feature is covered in detail. The tetrahedral elements should also be reasonably well
shaped.

UTDEM results are available in the form of observer time histories and plot dumps of
specified variables in an EXODUSII file. These results can be displayed with most any simple
plotting package in the case of time histories and by post-processing tools which can import
EXODUSII, such as EnSight or ParaView, in the case of plot dumps.

1.2 Units

All UTDEM simulations are performed in MKS (SI) units. As such, all input file values must
be scaled accordingly by the user. This is especially important for BOX IEMP simulations since
radiation-transport codes generally favor CGS units. Some exceptions are made for certain
control inputs, where different units are used for various reasons; these are noted throughout
this manual when encountered.
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2 UTDEM Input File and Keywords

The UTDEM input file uses the standard NEVADA input file format, which includes key-
words for debugging, physics type, solver control, output control, and more. Details of all of
these except for the specific physics can be found in the ALEGRA user guide [3]. A complete
input file for one of the UTDEM regression problems is given in Appendix B.

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
aztec set, 0
abc bc, sideset 4
pec bc, sideset 2
observer, nodeset 28
observer, nodeset 29
source, nodeset 31, function 1
slot observer, nodeset 19
slot, edgeset 123, aztec_set 1, width 0.00001, depth 0.0, int_mat 1, ext_mat 2
slot observer, nodeset 20
slot, edgeset 124, aztec_set 2, width 0.00005, depth 0.0, int_mat 1, ext_mat 2

END

Figure 2. Typical UTDEM physics keywords.

The format for specifying UTDEM physics and associated keywords is shown in Fig. 2.
The physics keyword UNSTRUCTURED TD ELECTROMAGNETICS specifies to the Nevada frame-
work that the UTDEM physics model should be used for the simulation. Most of the re-
maining keywords are specific to UTDEM and are described below along with many others.
Case is ignored in the input file. It is important to note that lines are limited to 160 char-
acters or less. Keywords can be abbreviated to stay below this limit. Additionally, when a
floating-point value is required, the decimal point needs to be included (i.e., 0. not simply
0).

2.1 Solver formulation keyword

FORMULATION, type
Specifies the UTDEM solver formulation for this simulation. Options for type are:

SECOND ORDER
Utilize the unconditionally stable, 2nd order electric-field wave-equation formula-
tion. This formulation works with all physical models implemented in the code
and is recommended for most applications.
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SECOND ORDER ARTUZI
Utilize the SECOND ORDER formulation above with Artuzi late-time stability cor-
rection. This formulation can suppress late-time drift due to the use of very large
time steps. Note that it causes all results to be advanced in time by 1/2 time
step.

SECOND ORDER ARTUZI, STATIC LIMIT
Utilize the SECOND ORDER formulation above with Artuzi late-time stability cor-
rection and the Artuzi rhs term [S]wn disabled. This should only be applied
with caution and only when the problem is essentially static, where element edge
lengths are much, much smaller than the wavelength. Although there is no theo-
retical justification for this modification, it appears to work extremely well in the
static limit.

SECOND ORDER FRIEDMAN, THETA real
Utilize the SECOND ORDER formulation, but with unconditional stability achieved
using the Friedman implicit method with adjustable damping [7], instead of the
Newmark-Beta method used for standard SECOND ORDER. The damping parameter
θ (required) should be in the range 0 ≤ θ ≤ 1, where 0 is no damping and 1
is the maximum damping. This solver is intended to be used only with PIC
simulations to damp high frequency (ω ∼ 1/∆t) noise from particle fluctuations.
Our experience is that this method can very effectively damp noise as θ → 1, but
occasionally results in numerical instability in large production simulations. The
reason for this has not been determined, but is clearly problem-specific. Using
θ = 0.25 seems to be a practical safe value, although experimenting with values
up to θ = 1 may be successful for further reduction of particle noise. Note
that PIC simulations have an additional constraint on the timestep. They must
resolve the highest frequency plasma oscillations in the problem, ωp∆t . 1, where
ωp =

√
ne2/ε0, and n is the plasma density in C/m3.

CRANK NICOLSON
Utilize the CRANK NICOLSON time integrator for the first-order form of Maxwell’s
equations. This formulation is unconditionally stable like the second-order for-
mulation, and can be shown to be algebraically equivalent. It is required for use
with PML boundaries and nonlinear material models, and is compatible with PIC.
Note that some functionality is not available with Crank-Nicolson.

FIRST ORDER
Utilize the conditionally stable, coupled 1st order formulation (not fully imple-
mented).

For additional information on these options consult the UTDEM theory guide [14].

CONDITION NUMBER
Specifies that the system matrix condition number should be displayed whenever the
matrix is refilled.
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2.2 FEM basis order keyword

BASIS ORDER, int
Specifies the order of the FEM basis or shape functions. Available values are:

BASIS ORDER, 0
Default if no keyword specified
The default basis uses the Whitney tangential vector finite element with one
degree of freedom per edge. This is occasionally referred to as a 0th order or
1st order mixed element. These shape functions are constant along an edge and
linear across the element. In reality, they behave more like 0th than 1st order as
the spatial convergence is observed to be nearly linear.

BASIS ORDER, 1
This option adds one additional degree of freedom per edge by, for tetrahedrons,
adding six additional hierarchical shape functions to the original six Whitney
functions. This 1st order full element achieves full 2nd order or quadratic spatial
convergence with the penalty of doubling the number of unknowns in the FE
system.
This optional basis is presently only available for tetrahedral elements, precluding
its use with hybrid meshing. It has been successfully tested with all algorithms
in the code except for the unconditionally stable wire.

2.3 Solver option keywords for PIC

GODFREY ALPHA1, real
Specifies the coefficient of the forward time in the field solve. With FORMULATION
SECOND ORDER, one can specify GODFREY ALPHA1 ≥ 0.25. The default is 0.25 and
yields the Newmark-Beta time advance [8]. Practical values of GODFREY ALPHA1 are
between 0.25 and 1.0; at a value of 1 it is the same algorithm as Friedman with a theta
value of 2. Note that [8] analyzes a “Friedman” solver in detail, but this is a related
explicit first-order algorithm, not the one enabled in Emphasis with the SECOND ORDER
FRIEDMAN keyword.

2.4 Boundary condition keywords

PEC BC, SIDESET int
Specifies a perfect electric conductor boundary condition.

The electric fields tangential to the surface described by the sideset having id int will
be set to zero. This sideset id must exist in the genesis file or Nevada will complain.
Multiple pec bc’s may exist in the same simulation.

As with all sidesets, multiple disjoint surfaces may exist in the same sideset. PEC
surfaces may be grouped into different sidesets for purposes of visualization.
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PMC BC, SIDESET int
Specifies a perfect magnetic conductor or mirror-symmetry boundary condition.

The pmc condition is the natural boundary condition for the edge-conforming FEM
formulation and could simply be left “free”. However, for PIC simulations or any
simulation containing h-line integral observers, the user must specify a sideset defining
the pmc using this keyword. PIC simulations requesting the PIC_CURRENT plot variable
must have multiple pmcs specified using separate side sets.

The sideset id int must exist in the genesis file or Nevada will complain. Multiple pmc
bc’s may exist in the same simulation and PMC surfaces may be grouped into different
sidesets for purposes of visualization.

IBC BC, SIDESET int, IMPEDANCE real
Specifies an impedance boundary condition.

A 1st order surface impedance boundary condition with surface impedance value real
will be applied over the surface described by the sideset having id int. Presently,
this “impedance” must be real, a surface resistance only. This sideset id must exist
in the genesis file or Nevada will complain. Multiple IBC bc’s may exist in the same
simulation.

ABC BC, SIDESET int
Specifies an absorbing boundary condition.

A 1st order absorbing boundary condition will be applied over the surface described by
the sideset having id int. This sideset id must exist in the genesis file or Nevada will
complain. Multiple abc bc’s may exist in the same simulation.

An absorbing boundary condition is typically specified in conjunction with a port
boundary condition when the port is located on an exterior surface.

Boundary condition precedence is presently specified in the code as follows: PEC→ IBC→
ABC, i.e., an edge specified as both PEC and IBC or ABC will be PEC. An edge specified
as both IBC and ABC will be IBC.

To specify Perfectly Matched Layer (PML) boundaries to truncate a domain, see Chapter
8 for details. These are specified using a special material model in the block that defines the
layer, and do not use a boundary condition keyword.

2.5 Virtual edgeset keyword

PATH, EDGESET int,
POINT, X=real Y=real Z=real POINT, X=real Y=real Z=real POINT, ...
Specifies a virtual edgeset to be created along an arbitrary user-defined path through
the geometry, as described by a sequence of POINT vectors, which is independent of
mesh topology.
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The best-fitting path of existing edges to match the desired line segment(s) entered will
be found. The user is responsible for picking a unique EDGESET id. If an id is chosen
which exists in the Genesis file, a warning is issued and the virtual edgeset is not used.
If a specified segment endpoint cannot be reached within the default tolerance (half
the local minimum edge length) a warning will be issued giving the actual endpoint
used.

The order of the edges (and nodes) in the edgeset is determined by the order in which
the POINT’s are supplied. This is useful for the integration direction around an H LINE
INTEGRAL.

These virtual edgesets may be used anywhere a mesh-defined edgeset can be used. The
EXODUS EDGE SETS keyword should not be applied to these edgesets.

2.6 Observer keywords

OBSERVER, NODESET int
Specifies the simplest type of single-edge, electric-field-projection observer.

The edge will be located which is defined by the nodeset having id int. This nodeset
MUST contain only 2 nodes. Presently, UTDEM will not issue an error if it does not,
the observer will simply not be created. This will be fixed in a future version. Multiple
observers of this type may exist in the same simulation.

The observer time history will be written to a file with a generated name in the fol-
lowing format: problem_name.obsnodeset_id.proc_id.dat, where nodeset_id is the
requested nodeset id int, and proc_id will be 0 for serial or the appropriate processor
number for parallel. For parallel, each processor who has the observer is synchronized
to the correct value from the owner and writes a separate observer time-history file.
All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name.his
with the name: OBS-nodeset_id.

SLOT VOLTAGE OBSERVER, NODESET int, [DIRECTION X real Y real Z real]
Specifies a slot voltage observer.

The slot voltage at the node defined by the nodeset having id int will be monitored.
This nodeset MUST contain only 1 node. An error will be issued if it contains more
than 1 node. If the nodeset contains 0 nodes, the observer will simply not be created.
Multiple slot observers may exist in the same simulation.

The assumed positive direction of the voltage (actually “magnetic current”) can be
specified by the optional parameter DIRECTION. The direction here is that along the
slot, normal to the slot “gap” where the voltage would be measured across. If not speci-
fied, the natural direction (code internally assumed direction) will be output. This can
cause inversion of the results in parallel depending on the number of processors. Con-
sequently, it is recommended that the direction be specified. If the specified direction
is not very close to the assumed direction, a warning is issued.
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The observer time history will be written to a file with a generated name in the following
format: problem_name.slotobsnodeset_id.proc_id.dat, where nodeset_id is the
requested nodeset id int, and proc_id will be 0 for serial or the appropriate processor
number for parallel. For parallel, each processor who has the observer is synchronized
to the correct value from the owner and writes a separate observer time-history file.
All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name.his
with the name: SLOTVOLOBS-nodeset_id.

WIRE CURRENT OBSERVER, NODESET int, [DIRECTION X real Y real Z real]
Specifies the wire current observer.

The wire current at the node defined by the nodeset having id int will be monitored.
This nodeset MUST contain only 1 node. An error will be issued if it contains more
than 1 node. If the nodeset contains 0 nodes, the observer will simply not be created.
Multiple wire observers may exist in the same simulation.

The assumed positive direction of the current can be specified by the optional pa-
rameter DIRECTION. If not specified, the natural direction (code internally assumed
direction) will be output. This can cause inversion of the results in parallel depending
on the number of processors. Consequently, it is recommended that the direction be
specified. If the specified direction is not very close to the assumed direction, a warning
is issued.

The observer time history will be written to a file with a generated name in the following
format: problem_name.wireobsnodeset_id.proc_id.dat, where nodeset_id is the
requested nodeset id int, and proc_id will be 0 for serial or the appropriate processor
number for parallel. For parallel, each processor who has the observer is synchronized
to the correct value from the owner and writes a separate observer time-history file.
All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name.his
with the name: WIRECUROBS-nodeset_id.

E LINE INTEGRAL, EDGESET int, [DIRECTION X real Y real Z real]
Specifies an electric-field line-integral observer,

∫
E · dl.

The electric-field projections on the edges in the edgeset are simply summed. The
vector DIRECTION is used to determine the direction of the integral and therefore de-
termines the signs of all the individual edge contributions to the integral by taking the
dot product of the vector edge direction with the DIRECTION vector. Generally, the
mesh should be designed such that the edges are aligned in the correct direction, but
this is not required. Multiple observers of this type may exist in the same simulation.

The observer time history will be written to a file with a generated name in the follow-
ing format: problem_name.elinintedgeset_id.proc_id.dat, where edgeset_id is the
requested edgeset id int, and proc_id will be 0 for serial or the appropriate processor
number for parallel. For parallel, each processor who has a portion of the observer
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is synchronized to the correct value from the owner and writes a separate observer
time-history file. All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name.his
with the name: EDL-edgeset_id.

H LINE INTEGRAL, EDGESET int
Specifies a magnetic-field line-integral observer,

∮
H · dl.

The integration direction around the loop is determined by the order of the edges (and
nodes) in the edgeset. These edgesets are typically generated using the PATH keyword,
which generates the edgeset edges (and nodes) in the order in which the POINT’s are
supplied. An average magnetic field is computed for each edge in the edgeset by
computing the magnetic field at the center of each element connected to the edge.
This vector magnetic field is then dotted with the edge direction and the “sense” of the
edge, as determined by the edgeset edge (and node) ordering. These dot products on
the edges in the edgeset are then summed. Multiple observers of this type may exist
in the same simulation.

In the case of legacy edgesets created before the PATH command existed, the edge
"sense" is determined from the beam elements in the original mesh defining the edgeset,
specified using the EXODUS EDGE SETS keyword. This usage is deprecated with the
convenience of the PATH command.

The observer time history will be written to a file with a generated name in the follow-
ing format: problem_name.hlinintedgeset_id.proc_id.dat, where edgeset_id is the
requested edgeset id int, and proc_id will be 0 for serial or the appropriate processor
number for parallel. For parallel, each processor who has a portion of the observer
is synchronized to the correct value from the owner and writes a separate observer
time-history file. All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name.his
with the name: HDL-edgeset_id.

Note that if the simulation contains h-line integrals along with PMC symmetry bound-
aries, the PMC’s must be defined by sidesets using the PMC BC keyword.

SURFACE CURRENT, SIDESET int [int ...]
Enables the calculation of a surface current, n × H, on the nodes of the specified
conductor boundary sideset(s).

The surface current is computed from the magnetic field which itself is derived from the
electric field. As a result, the magnetic field value used in the surface current calculation
is constant over each element. An average normal is computed at each node from the
normal of the element faces that contain the sideset node. To enable output of the
computed surface current values, be sure to include SURFACE_CURRENT_DEN on the list
of requested plot variables. Because some post-processing tools may have problems
with the length of the variable name the following is suggested:

plot variable
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surface_current_den, as "js"
end

The surface current will be output at all nodes in the simulation but will only have
non-zero values on the specified sidesets.

MAX OBSERVER, ID int, NAME variable_name [BLOCK int int ...]
Specifies a maximum-field (or other registered variable) observer, where the id INT is
the user-defined identifier and NAME is the registered variable to be monitored such as
ELECTRIC_FIELD. The block list is optional and is used to specify which element blocks
are to be monitored. If the name or block listed is invalid then the code will issue an
error. If block is not supplied then all blocks are used. Multiple max observers can
exist for the same variable to monitor different sets of element blocks.

Results are displayed each cycle to the screen and sent to the HISPLT time-history file
at the EMIT SCREEN frequency. If the variable is a vector, both the maximum vector
(magnitude) is monitored along with the individual maxima of each component. For
a scalar variable only a single value is monitored and reported. For screen results, in
the case that a particular variable is identically zero for that time cycle it is reported
as ELECTRIC_FIELD == 0.

Typical screen results for two scalar fields and one vector field are:

MAX-5: ELECTRIC_FIELD_MAGNITUDE = 1.4325e+00 in Elem 13599
at (7.8396e+00,7.3799e-01,4.2033e-01)

MAX-6: ELECTRIC_FIELD_PROJECTION = 7.6761e-01 on Edge w/Nodes 10 - 347
at (7.8750e+00,6.2500e-01,1.6250e+00)

MAX-7: ELECTRIC_FIELD = (-1.8644e-01,3.9830e-01,1.3633e+00) in Elem 13599
at (7.8396e+00,7.3799e-01,4.2033e-01)

MAX-7: ELECTRIC_FIELD-X = -1.0047e+00 in Elem 8588
at (7.5214e+00,7.5055e-01,1.6395e+00)

MAX-7: ELECTRIC_FIELD-Y = 1.0235e+00 in Elem 13902
at (7.7500e+00,1.0000e+00,1.6250e+00)

MAX-7: ELECTRIC_FIELD-Z = 1.3633e+00 in Elem 13599
at (7.8396e+00,7.3799e-01,4.2033e-01)

HISPLT names for the same variables are:

MAX-5
MAX-6
MAX-7-X
MAX-7-Y
MAX-7-Z
MAX-7-C-X
MAX-7-C-Y
MAX-7-C-Z
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2.7 Source keywords

SOURCE
The source keyword may be used in three different modes depending on the type of
boundary set (nodeset, edgeset, or sideset) specified along with it.

1. The following syntax specifies the simplest type of single-edge, electric-field-projection
Dirichlet source:

SOURCE, NODESET int, FUNCTION int, SCALE real SHIFT real

The edge will be located which is defined by the nodeset having id int. This
nodeset MUST contain only 2 nodes. Presently, UTDEM will issue an error if it
has > 2 nodes. If it has 0 or 1 nodes, possibly due to parallel decomposition, the
source will simply not be created. Multiple sources of this type may exist in the
same simulation.
The keyword FUNCTION int specifies a source time history defined by a Nevada
keyword function definition described later. The function is scaled by SCALE and
is shifted in time by SHIFT.
The source time history will be written to a file with a generated name in the
following format: problem_name.srcnodeset_id.proc_id.dat, where nodeset_id
is the nodeset id parameter from the SOURCE line and proc_id will be 0 for serial
or the appropriate processor number for parallel. For parallel, each processor who
has the source is synchronized to the correct value from the owner and writes a
separate source time-history file. All of these files are identical at the end of the
simulation.
The source time history will be written to the hisplt database problem_name.his
with the name: SRC-nodeset_id.

2. The following syntax specifies the next simplest electric-field-projection Dirichlet
source–a multi-edge, linear, distributed source:

SOURCE, EDGESET int, FUNCTION int, SCALE real SHIFT real
, DIRECTION, X real Y real Z real, LENGTH real

The edges will be located which are defined by the edgeset having id int. The
source will be applied polarized along the direction vector DIRECTION (d) and
scaled to provide the desired magnitude when integrated over the length LENGTH
(`). The scale factor for each edge in the source is l · d/`, where l is the vector
edge length (not normalized). For this reason, this source makes sense only if the
edges are linear and along a Cartesian axis. Multiple sources of this type may
exist in the same simulation.
The source time history will be written to a file with a generated name in the
following format: problem_name.linsrcedgeset_id.proc_id.dat, where edge-
set_id is the edgeset id parameter from the SOURCE line and proc_id will be
0 for serial or the appropriate processor number for parallel. For parallel, each
processor who has the source is synchronized to the correct value from the owner
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and writes a separate source time-history file. All of these files are identical at
the end of the simulation.
The source time history will be written to the hisplt database problem_name.his
with the name: LINEARSRC-edgeset_id.

3. The following syntax specifies the final type of electric-field-projection Dirichlet
source–a multi-edge, belt-distributed source:

SOURCE, SIDESET int, FUNCTION int, SCALE real SHIFT real
, DIRECTION, X real Y real Z real, LENGTH real

This source is applied over a surface and can, for example, be used to create a
delta-gap source on a coax center conductor. The edges will be located which are
defined by the sideset having id int. The source will be applied polarized along
the direction vector DIRECTION (d) and scaled to provide the desired magnitude
when integrated over the length defined by LENGTH (`). The scale factor for each
edge in the source is l · d/`, where l is the vector edge length (not normalized).
Multiple sources of this type may exist in the same simulation.
The source time history will be written to a file with a generated name in the fol-
lowing format: problem_name.dstsrcsideset_id.proc_id.dat, where sideset_id
is the sideset id parameter from the source line and proc_id will be 0 for serial
or the appropriate processor number for parallel. For parallel, each processor who
has the source is synchronized to the correct value from the owner and writes a
separate source time-history file. All of these files are identical at the end of the
simulation.
The source time history will be written to the hisplt database problem_name.his
with the name: DISTSRC-sideset_id.

PORT SOURCE
A port source is specified with one of the following commands:

PORT SOURCE, COAXIAL, SIDESET int, FUNCTION int, SCALE real SHIFT real

, CENTER, X real Y real Z real

PORT SOURCE, PARALLEL PLATE, SIDESET int, FUNCTION int, SCALE real

SHIFT real, DIRECTION, X real Y real Z real, SEPAR real

PORT SOURCE, FIELD DIST, SIDESET int, FUNCTION int, SCALE real SHIFT real

Port sources are soft (non-Dirichlet) sources used to drive specific conductor configura-
tions. The simplest are the coax and the parallel plate, which have been implemented.
More complicated are rectangular or circular waveguide port sources, which require
fourier transforms. These have not yet been implemented. Multiple port sources may
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exist in the same simulation. When a port source is applied to an external surface, an
absorbing boundary condition is also typically applied to the same sideset.

Other than the normal waveform description, the coaxial port requires only the spatial
CENTER be specified. The TEM excitation is applied over the specified sideset with E
polarized in the radial direction and the proper variation of

1

r ln(b/a)
.

Here, a is the inner radius and b is the outer radius, which are determined by the code
from the sideset information.

The parallel-plate port requires, in addition to the waveform description, an E-polarization
DIRECTION and a plate separation SEPAR. The TEM excitation is applied over the spec-
ified sideset with polarization DIRECTION and magnitude SCALE/SEPAR such that the
voltage across the plates is SCALE.

The field-distribution port obtains the port field from the sideset distribution factors
in the original 3D genesis file. For a description of how to obtain this distribution, see
section 10 on inlet-port Poisson solutions.

The source time history will be written to a file with a generated name in the follow-
ing format: problem_name.prtsrcsideset_id.proc_id.dat, where sideset_id is the
sideset id parameter from the port source line and proc_id will be 0 for serial or
the appropriate processor number for parallel. For parallel, each processor who has
the source is synchronized to the correct value from the owner and writes a separate
source time-history file. All of these files are identical at the end of the simulation.

The source time history will be written to the hisplt database problem_name.his with
the name: COAXPORTSRC-sideset_id or PPLTPORTSRC-sideset_id.

WIRE VOLTAGE SOURCE
Specifies a voltage source applied on a single wire edge:

WIRE VOLTAGE SOURCE, EDGESET int, FUNCTION int, SCALE real SHIFT real,

DIRECTION, X real Y real Z real

The source is applied “in series” with this edge, along the wire. If a WIRE LOAD is
present on this edge, the two are in series on the edge. The polarity of the applied
voltage will be determined by the DIRECTION parameter which should be reasonably
close to the edge direction.

The edgeset must contain only 1 edge otherwise an error will be issued.

The source time history will be written to a file with a generated name in the fol-
lowing format: problem_name.wiresrcedgeset_id.proc_id.dat, where edgeset_id is
the EDGESET parameter from the WIRE VOLTAGE SOURCE line and proc_id will be 0
for serial or the appropriate processor number for parallel. For parallel, the owning
processor writes the source time-history file.
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The source time history will also be written to the hisplt database problem_name.his
with the name: WIREVOLSRC-edgeset_id.

J SOURCE, BLOCK int [int int ...], [options]
Specifies a volumetric vector current-density source. Options available are:

FUNCTION int, SCALE real SHIFT real

DIRECTION, X real, Y real, Z real

CENTER, X real, Y real, Z real

ATTEN real

PROP bool | string

PROPDIR X real, Y real, Z real

RADTRANS bool | string

ANNULUS bool | string

ORIGIN X real, Y real, Z real

If FUNCTION and DIRECTION are specified, the current density will be applied at all
nodes in one or more mesh BLOCK(s), flowing in the direction DIRECTION, having the
time history specified by FUNCTION.

If ATTEN is nonzero, (default is zero) an exponential attenuation is applied across the
mesh according to exp(−ATTEN ∗ z), where z is the normal distance from the source
plane to the node at which the current is required. The attenuation is in the PROPDIR
direction, so PROPDIR and CENTER must be provided.

If PROP is true or yes, (default is no) the source will emanate from a plane passing
through the point CENTER traveling in direction PROPDIR. The source plane must be
outside and behind the mesh volume with respect to the propagation direction, oth-
erwise the code will issue a fatal error. If PROP is false or no, the source will simply
follow the specified time history simultaneously throughout the mesh block(s). If PROP
is yes, then CENTER and PROPDIR must be defined.

If RADTRANS is true or yes, (default is no) then the current direction will be defined by
data imported from a radiation-transport code such as CEPTRE. This data is written
to the simulation genesis file by the transport code.

If ANNULUS is true or yes, (default is no) then a phi-directed current will be generated
about the axis defined by DIRECTION. An ORIGIN for the annulus coordinate system
must be provided which lies on the axis defined by DIRECTION.

The source time history will be written to the hisplt database problem_name.his with
the name: JSRC-1001. If a FUNCTION is specified, that time history is written but is not
related to the time history of the externally defined source. The correct external-source
time history can be written to the problem_name.exo file by requesting “CUR_DEN”
under plot variables.
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EXTERNAL J SOURCE, BLOCK int [int int ...], ext-j-spec
Two variations of ext-j-spec are available. The first specifies an external Exodus-
format file containing current (and optionally, conductivity) with the options:

FILE, file-name (problem_name)

LOADEXTERNALCONDUCT, bool | string (true)

HALTEXTERNALSIM, bool | string (true)

CURDENNAME, string (TRANS_CUR_DEN)

CONDUCTNAME, string (CONDUCTIVITY)

This option directs the code to look for time planes of nodal current-source data in
either the problem genesis file (if the FILE keyword is not set) or the alternate file
name specified by the FILE keyword. Note that the alternate file only works for serial,
if parallel is desired then the data must be placed in the problem genesis file. The
LOADEXTERNALCONDUCT keyword specifies whether to read external conductivities from
the same file; the default is to read them and must be disabled by entering no or
false. The CURDENNAME keyword specifies the name in the genesis or alternate file
of the current-density data. The default is “TRANS_CUR_DEN”. The CONDUCTNAME
keyword specifies the name of the conductivity data. The default is “CONDUCTIV-
ITY”. If the data is not found an error will halt execution.

If the simulation termination time exceeds the external time planes available, the sim-
ulation will gracefully terminate and complete post-processing steps such as far-field
transient calculations. The HALTEXTERNALSIM keyword set to “no” or “false” can be
used to modify this behavior to continue the simulation with J fixed at the final time
plane provided.

Note that frequency-domain far-field patterns cannot be generated by de-convolution
using this current source, so far-field patterns from external j-sources are not supported.
Far-field transient waveforms use no de-convolution.

The external current-source time history can be viewed in the problem_name.exo file
by requesting the plot variable “CUR_DEN”. Since the external source is volumetric,
there is no associated time history variable in this case.

The second form uses the RTC functionality to allow the user to specify current as
a vector function of space and time with the extj-spec value user defined. The
RTC function is C-style code that must be enclosed in double quotation marks ("...").
Special variable names are time, which uses the simulation time value, coord, an array
of three values corresponding to the nodal coordinates (x, y, z), and field, an array
of three values that specifies the vector J. A full description of the options available
with the RTC is given in Appendix E. An example of this usage follows.
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EXTERNAL J SOURCE, BLOCK 1, USER DEFINED
"
double pi = acos(-1.0);
double freq = 1.e8;
field[0] = 0.0;
field[1] = 0.0;
field[2] = -sin(freq*time) * sin(pi*coord[0]);

"

PLANE WAVE SOURCE, SIDESET int, BLOCK int [int int ...], FUNCTION int,
POLARIZATION X real Y real Z real, PROPDIR X real Y real Z real, [CENTER
X real Y real Z real]
Specifies a plane-wave source.

A plane wave will be launched in one or more mesh BLOCK(s), with polarization given
by the vector following POLARIZATION, propagating in the direction given by the vector
following DIRECTION, having the time history specified by FUNCTION. These block(s)
define the total-field region which is bounded by the supplied SIDESET. Any remaining
blocks in the simulation will be the scattered-field region.

The optional parameter CENTER specifies the location of the phase center of the plane-
wave source in mesh coordinates. This can be any point in the source plane. If this
parameter is not supplied, the code will compute a phase center which is just on the
incident side of the total-field region, normal to the propagation direction PROPDIR. The
user should take care to provide a phase-center location which makes sense relative to
the total-field region and the propagation direction.

The source time history will be written to the hisplt database problem_name.his with
the name: PWSRC-sideset_id.

2.8 Load keywords

EDGE LOAD
The following syntax specifies a single-element load on an element edge:

EDGE LOAD, NODESET int, type, VALUE real

EDGE LOAD, EDGESET int, type, VALUE real

If NODESET is specified, the edge will be located which is defined by the nodeset having
id int. This nodeset should contain only 2 nodes. UTDEM will issue an error if it
contains more than 2 nodes. If it contains less than 2 nodes no load will be applied.

If EDGESET is specified, the edge(s) specified in the edgeset is(are) used. Unlike the
NODESET description above, the edgeset may contain one or more edges. If it contains
more than 1 edge, the load will be divided equally between the edges in the edgeset. The
assumption is that the edgeset contains edges in a "line" such that series connection
of the sub-loads makes sense. If the edgeset contains no edges, no load is applied.
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The parameter type is limited to “R”, “L”, or “C”: a single resistor, inductor, or capac-
itor, respectively. Multiple EDGE LOADs of the same or different types may exist in the
same simulation, but not on the same edge.

If it is desired to monitor the voltage across the load, an observer should be assigned
to the same NODESET or EDGESET using the OBSERVER or E LINE INTEGRAL keywords.

SPICE LOAD
The following syntax specifies a load described by a Spice deck on an element edge:

SPICE LOAD, NODESET int, DECK, filename [, XYCE]

SPICE LOAD, EDGESET int, DECK, filename [, XYCE]

If NODESET is specified, the edge will be located which is defined by the nodeset having
id int. This nodeset should contain only 2 nodes. UTDEM will issue an error if it
contains more than 2 nodes. If it contains less than 2 nodes no load will be applied.
If EDGESET is specified, the edge specified in the edgeset is used. The edgeset should
contain only 1 edge. If if contains more than 1, UTDEM will issue an error. If it
contains no edge, no load will be applied.

If the optional keyword XYCE is present on any load, all loads will be solved with Xyce
[4] rather than the default Spice library.

The SPICE DECK containing the description of the spice load in the form of a sub-circuit
must be provided with the SPICE LOAD keyword.

SPICE MODEL spice_option
Specifies how SPICE/Xyce is utilized and the origin of the spice model deck for the
simulation. Options for spice_option are:

build Lumped-parameter SPICE/Xyce deck will be auto-created and written to a file
during startup, this is the default;

use Lumped-parameter SPICE/Xyce deck will be read from file.

Generally, an initial simulation is accomplished using the build (default) option which
writes the SPICE/Xyce deck to a file (see SPICE FILE keyword below). If custom
changes are desired to this deck for subsequent simulations, the file can be edited and
the use option invoked thereafter. If the SPICE MODEL keyword is not present, the
default is to auto-build the deck.

SPICE FILE "filename"
Specifies the filename from which to read the SPICE/Xyce model deck if SPICE MODEL,
use is specified, or the file to which to write the deck if SPICE MODEL, BUILD is specified
or not present.

The argument "filename" is an ascii string and the quotes are required. If SPICE
FILE is not specified, the SPICE deck is either read from or written to the default
filename, problem_name.in. Note that this file, either the default or that specified by
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SPICE FILE, will be OVERWRITTEN for the next simulation if it is left in place on
the file system.

SPICE STEP FRACTION real
Specifies the fraction of the simulation time step which is to be used for the maximum
SPICE internal time step. The default value is 0.1.

2.9 Slot keyword

SLOT, EDGESET int, AZTEC_SET int, WIDTH real, DEPTH real,
INT_MAT int, EXT_MAT int
Specifies a single sub-grid, thin-slot model.

The slot is defined to lie along the edges defined by the edgeset int with the specified
WIDTH and DEPTH. Since the slot is solved using a separate linear system, an independent
AZTEC_SET is defined for the slot (see Linear solver keywords). The id of this aztec_set
should be something other than 0 (the default), which is reserved for the primary
system solve. An example of this can be found in the input file given in Appendix B.
Multiple slots may exist in the same simulation.

Since the slot algorithm requires a differential H-field drive based on fields on both sides
of the PEC plane containing the slot, the materials on those sides must be defined by
different material indices. These are defined by int_mat and ext_mat and are the
same material id’s as defined in the framework BLOCK keyword described below. These
materials can in fact have identical constitutive parameters, but they must be entered
as two different materials.

Terminating a slot on a periodic boundary has not been tested and is not recommended.

2.10 Wire keywords

WIRE, EDGESET int, AZTEC_SET int, RADIUS real
Specifies a single sub-grid, thin-wire model.

The wire is defined to lie along the edges defined by the edgeset int with the speci-
fied RADIUS. Since the wire is solved using a separate linear system, an independent
AZTEC_SET is defined for the wire (see Linear solver keywords). The id of this aztec_set
should be greater than 0, which is reserved for the primary system solve.

Multiple wires may exist in the same simulation. Wires end conditions must either be
open or terminating on a PEC or periodic boundary. The ends of two wires cannot
connect together as this condition is not implemented. If this situation arises, simply
use a single wire with a bend or whatever is required.

The ends of the wire may be placed on opposite periodic boundaries to make the wire
look "infinitely long". The user is responsible for verifying that the wire indeed lies in
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the mesh as expected. If somehow only one end of the wire is on a periodic bound-
ary the code will proceed with possibly undesirable results as the periodic boundary
implementation makes it difficult to detect this situation.

UNCSTABWIRE, EDGESET int, AZTEC_SET int, RADIUS real
Specifies a single sub-grid, unconditionally stable thin-wire model.

The wire is defined to lie along the edges defined by the edgeset int with the specified
RADIUS. Since the algorithm uses a separate linear system, an independent AZTEC_SET
is defined for the wire (see Linear solver keywords). The id of this aztec_set should
be something other than 0, which is reserved for the primary system solve. Multiple
wires may exist in the same simulation.

WIRE LOAD, NODESET int, R, VALUE real
Specifies a single thin-wire lumped resistive load.

The resistor is defined to lie along the edge defined by the nodeset int with resistance
VALUE.

WIRE LOAD, EDGESET int, R, VALUE real
Specifies a single thin-wire lumped resistive load.

The resistor is defined to lie along the edge defined by the edgeset int with resistance
VALUE.
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3 Running UTDEM Simulations

Running a UTDEM simulation requires a Genesis mesh geometry file, problem_name.gen,
and an input file, problem_name.inp (example in Appendix B). Assuming a standard Nevada
user’s environment or a subset thereof exists in the user’s operating environment, simulations
are run in one of two ways:

$ alegrabal -p <int> <problem_name>
$ Alegra <problem_name>

or

$ runAlegra <problem_name>

The alegrabal script invokes mesh decomposition software to divide and load balance
the mesh among int processors. If serial execution is desired, this step is not required.

The Alegra or runAlegra script actually runs the simulation. For a parallel simulation
being run for the first time after the alegrabal script is invoked, the decomposition is
completed before the simulation starts. For batch runs on clusters, this may not be the case
and “Spread <problem_name>” needs to be run after alegrabal. If your cluster job runs
extremely slowly this is likely the problem because the job was run serial.

After the parallel simulation is completed, the Alegra script performs the necessary
joining of the parallel ExodusII results into a single ExodusII file.

For EMPHASIS distribution releases, “alegra” or “Alegra” in the above commands is
replaced with “emphasis” or “Emphasis”, such that alegrabal becomes emphasisbal and
runAlegra becomes runEmphasis. Additional options for each command can be obtained
using “–h”, such as “runAlegra –h”.
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4 UTDEM Input Options

BOX IEMP [, LOAD CURRENT] [, LOAD DOSE]
Specifies a Box IEMP simulation.

If the BOX IEMP keyword is given alone, variables are registered for DOSE and DOSE_RATE
and the j source time history is normalized such that it’s time integral is unity. If the
LOAD CURRENT keyword is added, the vector current is loaded as provided by radiation
transport through the simulation genesis file. This requires the RADTRANS keyword to
be specified in the J SOURCE. If the LOAD DOSE keyword is added, the energy deposition
is loaded as provided by radiation transport, again through the genesis file.

Note also that a BOX IEMP simulation requires that the RIC Electrical or HP Gas
Electrical material model be used for all dielectrics. This requirement is enforced by
UTDEM. The box-iemp source also requires that the corresponding material model
use nodal variables (selected by not specifying NDOF, ie, taking the default).

BOX CABLE
Specifies a coupled Box IEMP/Cable SGEMP simulation.

The use of this keyword requires EMPHASIS/CABANA [13] to also use the keyword.
The two codes, EMPHASIS/UTDEM 3D and EMPHASIS/CABANA 2D, then com-
municate through the SPICE or Xyce solve to couple a UTDEM SPICE LOAD to a
single cable conductor. Both codes must be using the same time step, termination
time, and spice control.

For UTDEM, BOX IEMP must be specified along with a SPICE LOAD. A deck will be
required for the SPICE LOAD; use something like

SPICE LOAD, EDGESET 1, DECK, "resistor.in" [, XYCE]

The coupling works with either the default SPICE or Xyce library. Place a resistor
in “resistor.in” that will be used in the setup step below and ignored for the coupled
simulation. Instead, a pre-edited spice deck will be used by both codes, specified by

SPICE MODEL, USE
SPICE FILE, "box_cable.in"

In CABANA, the cable is described as usual along with the two keywords above in the
same format.

The coupled simulation is executed similar to single simulations using

$ runEmphasis -x $EMPHASIS_3D_EXE -n emphasis box :
-x $EMPHASIS_2D_EXE -n emphasis cable

Instructions for generating the box_cable.in file are the following:
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1. In the UTDEM input deck box.inp, comment SPICE MODEL, USE and SPICE
FILE, "box_cable.in" so that the SPICE/Xyce deck is built. Similarly, do this
for the CABANA input deck cable.inp while adding “SPICE MODEL, BUILD”. In
addition, comment out the BOX CABLE keyword in each input deck. Now run both
codes uncoupled, either using the execution line above or separately, generating
initial SPICE/Xyce decks for the uncoupled problems, box.in and cable.in.

2. Copy the UTDEM SPICE/Xyce deck box.in to box_cable.in and edit the file:

(a) Switch nodes 1 and 10001
(b) Change node 2 to 20001
(c) Change node 3 to 30001
(d) Change ISRC1 to ISRC
(e) Change C1 to C
(f) Remove the X1 line
(g) Remove the SUBCKT stuff
(h) Keep the .TRAN, .OPTIONS, .PRINT TRAN, and END lines

3. From the CABANA SPICE/Xyce deck cable.in:

(a) Copy in the circuit description
(b) Remove the first line comment and the R1 line
(c) Add the V(*)’s from the .PRINT TRAN line(s) to the .PRINT TRAN line

from box.in, not exceeding 8 per line
(d) The .TRAN and .OPTIONS in cable.in should be identical to those already

in box_cable.in from box.in. Only one set should remain.

At this point, revert the two input decks by removing the comments from “BOX CABLE”,
“SPICE MODEL, USE” and “SPICE FILE, "box_cable.in"” lines. Comment the “SPICE
MODEL, BUILD” line in cable.inp.

UPDATE MAT STATE, bool | string, TSTART real TEND real INTERVAL real
Specifies whether material state is updated at the end of each time cycle.

Options are true (or yes) and false (or no) [default]. If specified, the material state is
updated and a matrix refill is triggered. This is generally used only with the BREAKDOWN
ELECTRICALmaterial model. The time window over which this applies can be controlled
using the TSTART and TEND keywords. The INTERVAL keyword specifies how often within
the specified time window the update/refill is triggered. If INTERVAL is 0., then it is
triggered every time cycle.

This keyword is not necessary for BOX IEMP simulations using energy deposition to
drive the RIC ELECTRICAL material model since UTDEM forces the matrix refill in
that case.

TIME STEP MOD, real
Specifies a global modification to the UTDEM-computed stable time step.
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The default is 1. This value does not effect the time step if specified using the framework
keyword CONSTANT TIME STEP.

Time step information is written to the output stream and appears just after the
“EMPHASIS/UTDEM” banner under the title “Time Step Info:”.

The first time step given is the 3D Courant time step computed from the global mini-
mum edge length.

The second is the EMPHASIS recommended time step modified by TIME STEP MOD.
This time step will be used for the simulation unless CONSTANT TIME STEP is specified
or, for PIC simulations, COURANT FACTOR is specified. This time step is slightly larger
than 3D Courant and should be fine for most simulations, even PIC simulations with
non-relativistic particles.

The third is a larger, empirically determined time step based on the maximum edge
length and should provide good results for most pure electromagnetic simulations. To
use the first or third time step the simulation will have to be restarted specifying the
desired time step using CONSTANT TIME STEP.

COMPUTE ENERGY, bool | string
Specifies whether or not electric, magnetic, and total energy is computed throughout
the computational volume.

The possible options are true (or yes) and false (or no). The default is presently false.
If true, appropriate energy global variables are registered and the energy time histories
are compute and written to the hisplt database problem_name.his with the names:
E-ENERGY, H-ENERGY, and TOT-ENERGY. Energies are defined as

E-ENERGY =
1

2

∫
εE · EdV, (4.1)

H-ENERGY =
1

2

∫
µ−1B ·BdV, (4.2)

TOT-ENERGY = E-ENERGY + H-ENERGY. (4.3)

JOULE HEATING, string
A more detailed energy diagnostic which tallies changes in energy due to Joule heating
and currents. The possible options are ON and OFF. When turned on, this option
also sets COMPUTE ENERGY to true; therefore, the COMPUTE ENERGY option
is redundant when JOULE HEATING is turned on.

In addition the following quanties are computed. Two element variables are generated.
Define T as given output time. In each element P the local power densities are stored

JOULE_POWER_DENSITY =
1

|P |

∫
P

σE(T ) · E(T )dV, (4.4)

SOURCE_POWER_DENSITY =
1

|P |

∫
P

J(T ) · E(T )dV. (4.5)
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If requested these outputs appear in problem_name.exo. In addition global time his-
tories are written to the hisplt databas problem_name.his

GLOBAL_JOULE_POWER =

∫
σE(T ) · E(T )dV (4.6)

GLOBAL_SOURCE_POWER =

∫
J(T ) · E(T )dV (4.7)

GLOBAL_JOULE_ENERGY =

∫ T

0

∫
σE(T ) · E(T )dV dt (4.8)

GLOBAL_SOURCE_ENERGY =

∫ T

0

∫
J(t) · E(t)dV dt (4.9)

5 UTDEM PIC Input File and Keywords

The UTDEM PIC input file also uses the standard NEVADA input file format. It permits
all of the UTDEM physics-specific command keywords described in the preceding sections,
as well as several new command keywords that are described later in this section.

The keyword UNSTRUCTURED TD ELECTROMAGNETIC PIC specifies to the Nevada frame-
work that the UTDEM PIC physics model should be used for the simulation. All the UTDEM
keywords are available, as well as several more that are specific to UTDEM PIC. As before,
case is ignored in the input file and lines are limited to 160 characters or less. And remember
that when a floating-point value is required, the decimal point needs to be included (i.e., 0.
not simply 0).

5.1 PIC-Specific Keywords

The following keywords are available to UTDEM PIC physics but are also available to the
Structured Time-Domain ElectroMagnetics (STDEM) PIC physics model (see [1]).

DEFINE SPECIES
The DEFINE SPECIES command keyword group provides a means of defining charged-
particle species to be used with the various particle emission and diagnostic commands.
One or more particle species may be defined in one DEFINE SPECIES keyword group
using the following syntax:

DEFINE SPECIES
string, MASS = real, CHARGE STATE = int, [MARK_AS_USED,]
[REGISTER_DENSITY]
...

END
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Each species is specified by three required parameters. The first parameter is a string
that provides a user-specified name for the species. This name is used to reference
the defined species in the all other input commands that require the use of a particle
species in their specification. The two remaining parameters for specifying a species are
the MASS and CHARGE STATE, which describe the particle species mass (in AMU), and
charge state, respectively. The charge state is a signed integer that gives the particle’s
charge relative to that of a proton. For example, an electron’s charge state would be -1
and triply ionized carbon would be +3. The optional MARK_AS_USED keyword indicates
that this species is to be immediately marked as use without waiting for another
command that references it. The optional REGISTER_DENSITY keyword indicates that
the charge density for this species will be unconditionally stored in its own registered
variable. If not supplied, this specie’s charge density will only be stored in its own
registered variable if the variable name RHO_string, where string is the name of
the species, is specified by the PLOT VARIABLE command.

GAS DRAG
The GAS DRAG command keyword enables a gas drag model for interaction between
electrons and a high pressure gas. The drag force slows down the electrons, and the
corresponding energy loss is computed in each element as an IONIZATION_RATE
variable to be used as a source of electron-ion pairs for the gas-breakdown plasma. If
this command keyword is used then a HP Gas Electrical material model must also be
used. Currently the gas drag model requires the same high pressure gas be present
throughout the entire simulation domain. The gas drag model also requires that the
corresponding material model use elemental variables (selected by setting NDOF=1).
The HP Gas Electrical model also has keywords to enable angular scattering of the
electrons in addition to the drag force.

ITS FILE, ["surface" | "volume"], [file-name]
The ITS FILE command keyword is used to provide the name of the file containing the
ITS distribution datasets needed by either the BEAM EMISSION or VOLUME EMISSION
command keywords when using the FIELD DISTRIBUTION = ITS option.

For backward compatibility, if the file type (surface or volume) is not specified, this
command defines the name for the BEAM EMISSION file. For VOLUME EMISSION, the
type is required. If file-name is not specified, the name its.pff will be used for
the surface emission file. Note that unless the file name consists of only identifier
characters (uppercase letters, digits, and underscore ‘_’), the supplied file-namemust
be quoted. Since this restriction eliminates almost all commonly used names for files,
it is recommended that the filename always be quoted.

CROSS SECTION DATABASE string
The CROSS SECTION DATABASE command keyword is used to provide the pathname of
the file containing the gas cross section database. Currently this file is used by the
KINETIC GAS ELECTRICAL material model below.

The required string is the pathname of the database. If this keyword is not specified,
the file CrossSections.txt in the current run directory will be used. Note that unless
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the file name consists of only identifier characters (uppercase letters, digits, ‘_’), the
supplied filename must be quoted. Since this restriction eliminates almost all commonly
used names for files, it is recommended that the filename always be quoted.

PARTICLE HISTORY
The PARTICLE HISTORY command keyword group provides a means of requesting out-
put history diagnostics for various types of aggregate particle information. One or more
such requests may be made in one PARTICLE HISTORY keyword group. The required
syntax is:

PARTICLE HISTORY
his_type, history_specification
...

END

The initial his_type string defines the type of the history request. Supported request
types are:

1. count, which gives the number of particles of the specified species.
2. energy, which gives the total kinetic energy of all particles of the specified species.
3. charge, which gives the total charge of all particles of the specified species.
4. merge stats, which gives various statistics regarding the performance of the par-

ticle merger algorithm.
5. merge counts, which provides various data on merged particles.
6. kpflux, which requests one or more “killed particle flux” (KPF) histories tallying

information about particles killed on a surface.

Three forms of history_specification are available:

1. his_type, [SPECIES = string,] [STATUS = string,] [LABEL = "string"]
This form provides global tallies, which can be filtered by species using the
SPECIES keyword, and by particle status using the STATUS keyword. Options
available in this specification are:
SPECIES = string | all

Specifies whether a single particle species or all species contribute to the his-
tory. This keyword can take the value of a single species as defined by the
DEFINE SPECIES command, or the special value all to combine the informa-
tion for all particle species in the simulation. Default is all.

STATUS = string
Legal values for the STATUS keyword depend on the history type, as follows:
For merge stats:

STATUS = fail | fail_reject | fail_qerr | fail_qlow | fail_emax
The fail value will report the total number of merge failures for any rea-
son; the others will report counts of merge failures by each specific failure
mechanism.
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For merge counts:
STATUS = sampled | created | killed | netkilled
Note that netkilled is the difference between the total number of killed
pre-merge particles and the total number of newly merged particles cre-
ated to replace them.

For all other history types:
STATUS = created | killed | surviving
These request the cumulative number of particles created during the sim-
ulation, the cumulative number of particles killed during the simulation,
and the number of particles that currently survive in the simulation, re-
spectively.

LABEL = "string"
Specifies the label to be used for the history output for this request. If not
supplied, a default label will be constructed based on the values of the other
keywords.

This form cannot be used with the kpflux history type.

2. his_type, KINETIC GAS MODEL = int, [SPECIES = string,] [GAS = string,]
[INTERACTION = string,] [LABEL = "string"]

This form provides information associated with kinetic gas collisions from a KINETIC
GAS ELECTRICAL material model, and can be filtered by the incident species of
the collision, the gas molecule of the collision, and the type of collision. Options
available in this specification are:

KINETIC GAS MODEL int
The required KINETIC GAS MODEL keyword is specifies the integer ID of the
material model, i.e., the ID supplied with the material model’s definition.

SPECIES = primary | secondary | all
Specifies the electron species of the incident particle in a collision. Defaults
to ALL if not supplied. Here, primary and secondary indicate the electron
species specified by the material model’s PRIMARY and SECONDARY key-
words, respectively, and all specifies that the contributions from both species
be combined.

GAS = string
Limits contributions to those from collisions with a specific gas molecule of
the material model, where the supplied string is the name of the molecule as
defined in the material model. If this keyword is not supplied, contributions
from all gas molecules in the model are combined.

INTERACTION = elastic | excitation | ionization | attachment | all
Specifies the type of collisions to be included in the history. If this keyword
is not supplied, ALL will be used, indicating that the contributions from all
interactions are to be combined.

LABEL = "string"
Specifies the label to be used for the history output for this request. If not
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supplied, a default label will be constructed based on the values of the other
keywords.

This form cannot be used with the kpflux history type.

3. kpflux, SPECIES = string, SIDESET = int [... int], TYPE = label,
[... TYPE = label]

This form is exclusive to the kpflux history type and is specific to UTDEM;
KPFLUX histories are not currently implemented in STDEM. It provides in-
formation on particles killed on boundary surfaces. Options available in this
specification are:

SPECIES = string
(Required) Specifies the name of the single species to be reported. The special
value all cannot be used with this history type.

SIDESET = int [... int]
(Required) Defines the boundary surface of interest with one or more sideset
indices.

TYPE = number | current | mean_energy | mean_px | mean_py | stdv_energy
| stdv_px | stdv_py | stdv_pz
One or more TYPE = label pairs may be provided within a KPFLUX history
specification. The units for the output values are Amps for current, m/s for
momentum, and γ − 1, i.e., E/mc2, for energy.

It is much more efficient to group all KPF history types for a given species and
sideset(s) into a single KPF request. The reason is that for a given killed particle,
the code only needs to find which KPF request to update once. However, it is
legal to create histories spread across two or more KPF requests with the same
species and sideset(s). A more important reason to group all histories into a single
request is that the number of requests is limited. For each species, the maximum
number is determined by the smaller of the number of bits in an ‘unsigned long’
or ‘double’, For almost all modern 64-bit machines, this limit is 64. Note that this
does create a portability issue for running problems with more than 32 histories
on older machines where the limit may be 32. However, this is an increasingly
unlikely occurrence.

PARTICLE SNAPSHOT
The PARTICLE SNAPSHOT command keyword group provides a means of requesting
output snapshot diagnostics for particles. One or more such requests may be made in
one PARTICLE SNAPSHOT keyword group. The data for all requested particle snapshots
will be written to the file problem_name.par.pff in PFF format.

PARTICLE SNAPSHOT
max1, [max2], SPECIES = string, ATTRIBUTES = string, LABEL = string,
FRACTION real FIRST int LAST int SKIP int
...

END
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Each request has one, or optionally two, integers (max1 and max2), which control the
number of particles for which data will be output. The larger is the maximum number
of particles to be output. The smaller is the maximum number of particles from a single
processor to be output. If only one value is specified, the two values are assumed to
be equal. The SPECIES keyword allows the specification of output for a single particle
species as defined by the DEFINE SPECIES command keyword group, or the special
value ALL, which outputs data for all particle species in the simulation. If not explicitly
specified, SPECIES defaults to ALL. The ATTRIBUTES keyword is a string containing the
characters “P” and/or “Q”, indicating that momentum and/or charge particle attributes
are to be output in addition to the particles’ spatial locations. Default is an empty
string (“ ”), indicating that only particle spatial locations will be output. The LABEL
keyword allows the user to supply a title prefix for the PFF dataset that will be written
to the output file for this request. The simulation time will be appended to this prefix.
If not supplied, a title prefix will be generated automatically from the SPECIES and
ATTRIBUTES keyword values. The FRACTION keyword is used to specify a real number,
between 0 and 1, indicating the maximum fraction of the simulation particles that
will be output. If not specified, it defaults to 1.0. Note that if the product of this
fraction and the total number of simulation particles exceeds max1, the actual fraction
of the particles output will be less than the value specified by the FRACTION keyword.
The FIRST, LAST, and SKIP keywords are used to control the output frequency for the
diagnostic request. The FIRST and LAST keywords specify the first and last timestep
indices, respectively, for which particle data will be output. The SKIP keyword is a
positive integer that specifies the number of timesteps between outputs for this request.
A value for SKIP must be specified. If FIRST is not specified, its default value is that
of SKIP. If LAST is negative, there is no upper limit for the timestep index. If not
specified, LAST defaults to −1.

5.2 UTDEM PIC-Specific Keywords

This section describes keywords available only to UTDEM PIC.

EMISSION Keywords
Two EMISSION command keywords define a surface over which particles are emitted
into the simulation region. The BEAM EMISSION source creates particles to match a
user-specified current, I(t), emitted from the surface. The FIELD EMISSION source
applies a space-charge-limited (SCL) algorithm locally on each face, creating enough
charge to satisfy Enormal = 0. The particle species and other emission characteristics
are provided by the several available parameter options. The two commands, whose
formats are shown below, are grouped together here because they have several common
keywords. In addition, there are a few more keywords that apply only to one or the
other of the commands, or are interpreted somewhat differently by each command.
The specific formats are:

BEAM EMISSION
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SIDESET int
SPECIES = string
[CYCLE INTERVAL int]
[COUNT int]
[EMIT PROBABILITY real]
[SPATIAL DISTRIBUTION = FIXED | RANDOM]
ENERGY DISTRIBUTION = CONSTANT real | RANDOM real [real] |

MAXWELLIAN real |
ITS [int] [, MERGE_PHI]
[, PHI0, X=real Y=real Z=real]

[ANGLE DISTRIBUTION = NORMAL | CONSTANT, X=real Y=real Z=real |
RANDOM [real real] | COSINE]

[NORMAL TOLERANCE real]
[AMPLITUDE real]
[TEMPORAL function-set]
[QPMIN_FUN function-set]
[QPMIN_FLOOR real]

END

FIELD EMISSION
SIDESET int
SPECIES = string
[CYCLE INTERVAL int]
[COUNT int]
[EMIT PROBABILITY real]
[SPATIAL DISTRIBUTION = FIXED | RANDOM real [real]]
ENERGY DISTRIBUTION = CONSTANT real | RANDOM real [real]
[ANGLE DISTRIBUTION = NORMAL | CONSTANT, X=real Y=real Z=real |

RANDOM [real real] | COSINE]
[NORMAL TOLERANCE real]
HEIGHT DISTRIBUTION = FIXED real | RANDOM real [real]
BREAKDOWN real
[QPMIN_FUN function-set]
[QPMIN_FLOOR real]

END

Options common to BEAM EMISSION and FIELD EMISSION commands:

SIDESET int
Provides the number of the sideset in the Genesis input file that provides the set
of faces that comprise the emission surface for this beam.

SPECIES = string
Provides the name of the particle species to be emitted and must match the name
of a species that has been defined using the DEFINE SPECIES command keyword.
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CYCLE INTERVAL int
Specifies the emission frequency in timesteps, with a default value of 1.

COUNT int (1)
Specifies the number of particles emitted from each face in the emission per
timestep, with a default value of 1.

EMIT PROBABILITY real (1.0)
Allows the specification of the probability, between 0 and 1, that any particle will
actually be inserted into the system. It defaults to 1.0.

ENERGY DISTRIBUTION
Describes the energy distribution of the emitted beam particles. The BEAM EMISSION
and FIELD EMISSION commands have two common options: CONSTANT and
RANDOM. The CONSTANT option has a single value that gives the beam en-
ergy in electron Volts (eV). The RANDOM option has two values that give the
minimum and maximum energies (in eV) for a uniform distribution of beam en-
ergy. If only one value is specified, it is assumed to be the maximum energy of the
distribution, and the minimum energy is assumed to be zero. The BEAM EMISSION
command has two additional options; see below.

ANGLE DISTRIBUTION
Describes the direction of emission with respect to the polar angle (θ) from the
surface. Four options are available: NORMAL, CONSTANT, RANDOM, and
COSINE. The NORMAL option has no parameters, and specifies that particles
are to be emitted with an initial velocity normal to the face from which they are
emitted (i.e., θ = 0). The CONSTANT option has three values that represent the
three components of a vector in Cartesian (x, y, z) space. Particles emitted from
the emission surface will be given an initial velocity in the direction of this vector,
regardless of the orientation of the emission face from which they is emitted.
The RANDOM option has two values that give the minimum and maximum θ
(in degrees) for a uniform distribution over θ. If these values are not specified,
default values of 0o and 90o will be used. The COSINE option will use a cosine
distribution (i.e., dN/dθ = cos θ) over the range from 0o to 90o. Note that if
ANGLE DISTRIBUTION is set to RANDOM or COSINE, the emitted particles will
be randomly distributed (uniformly) in azimuth relative to the emission face. Note
that if the ANGLE DISTRIBUTION keyword is not explicitly specified, it will default
to NORMAL, unless ENERGY DISTRIBUTION is specified to be MAXWELLIAN,
in which case ANGLE DISTRIBUTION defaults to COSINE.

NORMAL TOLERANCE real (0.001)
Allows the user to specify the tolerance (ε) with which the code determines that
the unit normal vectors of two distinct faces are equal. That is, if |n̂1 − n̂2| ≤ ε,
they are considered to be equal. If not specified, ε will default to 0.001. For
all cases except ANGLE DISTRIBUTION = CONSTANT, each face in an emission
surface needs an object that contains, among other things, the face’s unit normal
vector in order to generate the velocity of an emitted particle. To the extent that
multiple faces have the same normal vector, they can utilize the same object.
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Consequently, use of this keyword is primarily related to code efficiency. Note
that this keyword’s value provides an upper bound for the error in the normal
vector for any face.

QPMIN_FUN function-set
The optional QPMIN_FUN and QPMIN_FLOOR keywords define a minimum charge
weight for creating particles on the segment. The intention is to reduce the total
particle count by inhibiting the creation of “insignificantly low-weight” particles.
The minimum particle weight is defined by:

qpmin(t) = qpmin_floor, or
qpmin(t) = max(scale× fun(t), qpmin_floor)

Defining just the QPMIN_FLOOR keyword selects the first option, a fixed qpmin(t).
The QPMIN_FUN keyword selects the time-dependent option, and uses the stan-
dard Nevada function syntax ‘FUNCTION int [SCALE real]’ to define the func-
tion number and an optional scale factor. For this option, the QPMIN_FLOOR value
defines an absolute minimum charge value for a created particle.
Choosing these parameters for FIELD EMISSION is necessarily empirical. However,
values for BEAM EMISSION are easier to determine a priori. The charge-to-create
at each face of area A, Qcre, is a running sum of I(t)A∆temit/Asegment, where I(t) is
the time function defined by the TEMPORAL keyword, and ∆temit = cycle_interval×
timestep. Once this sum exceeds qpmin(t), N particles are created, where N =
min(int(Qcre/qpmin), count) and Qcre is reset to zero. Information to guide the
choice of qpmin parameters for both standard and ITS beam emission is printed
to the output file. For each segment, the code prints out values of min(Qcre),
mean(Qcre), and max(Qcre) for the faces. The actual runtime values of these
quantities are scaled by I(t)× cycle_interval.

Options specific to the BEAM EMISSION command:

SPATIAL DISTRIBUTION FIXED | RANDOM
Describes the spatial distribution of the emitted beam particles. Two options are
available: FIXED and RANDOM. If FIXED is specified and the COUNT keyword
has a value of 1, then the single particle emitted will be placed at the barycenter
of the emitting face. If FIXED is specified and the COUNT keyword has a value
greater than 1, then the particles emitted will be placed according to a fixed,
quasi-uniform algorithm over the emitting face. If RANDOM is specified, each
emitted particle is placed at a random point on the emitting face. The distribution
of these randomly-chosen emission points is uniform per unit area. If not specified,
SPATIAL DISTRIBUTION defaults to FIXED, unless the COUNT keyword is specified
to be greater than 1, in which case it defaults to RANDOM.

AMPLITUDE real (1.0)
Provides a scalar multiplier to specify the amplitude of the beam current, in
amperes, with a default value of 1.0.
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TEMPORAL function-set
Provides a means to specify non-constant time dependence for the amplitude of
the beam current. If specified, the amplitude at any instant in time is the product
of the scalar multiplier provided by the cmdoptamplitude keyword and the value
of the function-set evaluated at the current simulation time. If TEMPORAL is not
specified, the beam current is just the value supplied for the AMPLITUDE keyword,
independent of simulation time.
Presently, the beam current is assumed to be distributed uniformly over the en-
tire emission segment, i.e., the current density is constant. It should be noted
that, by convention, the product of the AMPLITUDE value and the value of the
TEMPORAL function at any given time must be non-negative. If the user supplies a
combination of AMPLITUDE and TEMPORAL that results in a negative value for the
amplitude of the beam current, it will be clipped to zero.

The BEAM EMISSION command has two additional options for ENERGY DISTRIBUTION:
MAXWELLIAN, and ITS. The MAXWELLIAN option has one value that gives the
temperature of the distribution in eV. For this option, the energies of the emitted
particles will be distributed using

dN

dE
= 4π

( m

2πkT

)3/2

e−E/kT ,

where kT is the supplied temperature of the distribution.

The ITS option requests that the energies (and angles) for emitted particles are ob-
tained by randomly sampling from data in a PFF file [10] computed by the ITS Radia-
tion Transport code [6] (or any other source that follows the ITS/Emphasis convention
for writing energy-angle (E, θ, φ) emission distributions to PFF datasets). See Ch. 11
for more details. The name of the source PFF file is specified using the ITS FILE
command keyword.

The optional ITS keyword int value depends on the type of PFF file being used. For
an original-version-0 file, this value is required—the user must explicitly define the
PFF dataset to use for the sideset. For curved surfaces with these files, the user must
also often use the PHI0 keyword to explicitly set a vector to define the φ = 0 axis. For
version-0 and version-1 files, Emphasis auto-fits the sideset to the ITS subsurface(s),
so the int value and the PHI0 keyword are not required Note that for a version-0 file,
the auto-fit may occasionally fail, and explicitly providing the PFF dataset number
may fix the problem. The int value is always ignored for a version-1 file. Setup
errors with these files indicates a fatal inconsistency between the ITS and Emphasis
geometries. Note that if the int value is omitted, a comma is required for between
"ITS" and either "MERGE_PHI" or "PHI0".

Finally, the ITS option also has the optional keyword MERGE_PHI, which indicates
that multiple azimuth (φ) bins in the supplied dataset are to be merged into a single
bin. In this case, the code can always internally define a φ = 0 axis, and the emission
angle is randomly selected from the range [0, 2π].

Options specific to the FIELD EMISSION command:
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SPATIAL DISTRIBUTION FIXED | RANDOM
The SPATIAL DISTRIBUTION keyword describes the spatial distribution of the
SCL-emitted particles. Two options are available: FIXED and RANDOM. If
the COUNT keyword has a value of 1, the FIXED and RANDOM options behave
identically – the single particle emitted will be placed at a location (xF ) in the
emitting face chosen to best correct the charge deficit at each node of the face.
If the COUNT keyword has a value greater than 1, then the particles are emitted
in pairs. If the value of the COUNT keyword is odd, an additional single particle
is emitted at xF . If the SPATIAL DISTRIBUTION keyword is FIXED, one particle
of each emitted pair will be placed according to a fixed, quasi-uniform algorithm
over the emitting face. Similarly, if RANDOM is specified, one particle of each
emitted pair is placed at a random point on the emitting face. The distribution of
randomly-chosen emission points is uniform per unit area. For both the FIXED
and RANDOM options, the location of the second particle as well as the charges
of both particles are chosen to best correct the charge deficit at each node of the
face, with the added constraint that the second particle’s location be within the
emitting face. If not specified, SPATIAL DISTRIBUTION defaults to RANDOM.

HEIGHT DISTRIBUTION FIXED | RANDOM
Specifies the height above the emission face that each emitted particle will be
injected into the simulation. The value provided should be between 0 and 1, and
represents the height as a fraction of the height of the element into which the
particle is being emitted. Two options are available: FIXED and RANDOM. The
FIXED option has a single value for the emission height fraction. The RANDOM
option has two values that give the minimum and maximum for the emission
height fraction. If only one value is specified, it is assumed to be the maximum,
and the minimum is assumed to be zero. There is no default for the HEIGHT
DISTRIBUTION keyword so it must always be specified.

BREAKDOWN real
Specifies the electric field intensity (E), normal to the surface of an emission
face, required to initiate emission from that face. Its value should be provided
with units in volts/meter. Until the normal electric field at any face exceeds
this supplied breakdown value, that face will not emit any particles. Once the
supplied value is exceeded, the face will emit particles in an SCL fashion for the
remainder of the simulation. There is no default for the BREAKDOWN keyword so it
must always be specified.

VOLUME EMISSION
This command keyword enables emission of electron/ion pairs or just electrons from
a volume defined as the union of one or more element blocks. It is a volume analog
of the BEAM EMISSION command, in which a total emission current I(t) is specified for
the entire volume. The full syntax is as follows:

VOLUME EMISSION
BLOCK int [int ... int]
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SPECIES = string
[COUNT int int int]
[CYCLE INTERVAL int]
[EMIT PROBABILITY real]
[SPATIAL DISTRIBUTION = FIXED | RANDOM]
ENERGY DISTRIBUTION = MAXWELLIAN real | ITS [MERGE_PHI]
[MOMENTUM X=real Y=real Z=real]
[ANGLE DISTRIBUTION = RANDOM [real real]]
[AMPLITUDE real]
[TEMPORAL function-set]
[QPMIN_FUN function-set]
[QPMIN_FLOOR real]

END

The options CYCLE INTERVAL, EMIT PROBABILITY, AMPLITUDE, TEMPORAL, QPMIN_FUN
and QPMIN_FLOOR have exactly the same meaning as the beam emission command,
while the options BLOCK, COUNT, and MOMENTUM have the same meaning as the particle
preload (see below).

The emission volume is defined by the element block list, where each int is a block-ID
as defined in the Genesis file. The string for the SPECIES option can either be the
name of a single electron species, or a quoted, space-delimited string of an electron
species name followed by one or more ion species names (note: currently, only one ion
type is supported). Creating just electrons is equivalent to creating electron-ion pairs
with infinitely massive ions. However, in this case, the ∇ ·D − ρ diagnostics will be
corrupted since they do not currently include the ion space-charge. The COUNT option
defines three integers whose product is the number of particles loaded per element.
These integers denote the spacing of a 3D lattice which distributes the inserted particles
uniformly throughout the element. If not supplied, it defaults to “1 1 1”. The SPATIAL
DISTRIBUTION option defines whether to distribute the particles either randomly (the
default) or uniformly.

There are two broad categories of supported electron energy-angle distributions: ITS
and non-ITS, For non-ITS emission, the MOMENTUM keyword is required input, to define
p0 = γv0, where γ is the relativistic factor (1 − (v0/c)

2)−1/2. This defines a reference
direction for emission that is analogous to the surface normal for BEAM EMISSION. The
default option is to emit a cold beam with p = p0 for all particles. Currently, there are
only two other options: (1) a warm beam with an isotropic Maxwellian distribution
about p0 defined by “ENERGY DISTRIBUTION = MAXWELLIAN theta”, where theta is
the temperature in eV, or (2) all particles emitted with |p| = p0 in a cone around p0

with polar angles defined by the ANGLE DISTRIBUTION keyword.

For ITS emission, the user supplies a PFF file with ITS volume electron emission data,
analogous to the ITS option for BEAM EMISSION. The PFF file name is defined with
the ITS FILE command. EMPHASIS automatically fits the centroid of each emission
element to an ITS emission subzone. At run time, the energy and angles are randomly
sampled from a table built from the ITS subzone emission tally, f(E, θ, φ). Note that
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unlike surface emission, the reference frame for θ and φ for each tally in the file is fixed
for all emission subzones, i.e., with respect to the global (x, y, z) coordinate frame of
the ITS simulation.

The ITS emission option also supports the loading of ITS energy deposition data in all
elements of the blocks. This is used as a direct ionization source for the HP gas model
(in addition to PIC particle energy loss). An ITS volume emission file can contain
both energy deposition and particle emission datasets. By default, all data in the file
is loaded unconditionally (and transparently to the user). There is very little overhead
for implementing energy deposition. However, there are cases where it useful to turn
off particle emission. This can be done by explicitly defining the COUNT option with
three integers whose product is zero, e.g. “0 0 0”.

Finally, note that there is currently no user control over the created ion energy-
angle distribution if ion creation is specified. All ions are created with a non-drifting
Maxwellian at room temperature (20oC).

COURANT FACTOR real, [REFERENCE TYPE = ref_type]
This command keyword allows the user to specify a factor FC > 0 to multiply the
Courant time step ∆tC = `s/c, where `s is a specified scale length. This results in a
simulation time step ∆t = FC∆tC .

The specific scale length used can be selected using the REFERENCE TYPE keyword.
Available values for ref_type are:

minimum edge length
average edge length
minimum element height

The first two length scales are the minimum and average lengths of any edge in the
problem domain, respectively, and the third is the minimum height of any element in
the problem domain. The minimum height of an element is defined to be the minimum
distance from any face of the element to any other node of that element that is not in
that face. If not supplied, minimum edge length will be used.

If the CONSTANT TIME STEP keyword (see [3]) is also specified, then the time step will
be set to the smaller of the time steps determined from the two specifications. If
neither COURANT FACTOR nor CONSTANT TIME STEP is specified, the default UTDEM
time step (see the TIME STEP MOD keyword) will be used (not recommended practice).
It is important to note that the time step due to the electromagnetic field solver
formulation being used should not be exceeded regardless of the method chosen for
setting the time step.

RANDOM SEED int [, MULTIPLIER = int]
This keyword changes the initial random seed for random numbers.

Without this keyword, the default behavior is to use an initial random seed of 1 for
each new simulation. The optional MULTIPLIER defaults to 1. The new initial seed is
RANDOM SEED + MULTIPLIER × processorNumber.
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ELECTRON SURFACE DATABASE, TYPE=string, NAME=string, FILE=string [, LOGARITHMIC]

This command keyword adds a new table to the database of electron-surface inter-
actions. Each table has data defined on a 2D grid of incident electron energy and polar
angle.

The TYPE keyword takes the values ‘scatter’ or ‘heating’. Data is read from the PFF
file specified by the FILE keyword, and given a name defined by the NAME keyword.
The optional LOGARITHMIC keyword specifies that logarithmic energy interpolation for
the incident electrons is used. By default, linear energy interpolation is used. Note
that although this command allows a heating table to be loaded, there is currently no
code to implement heating in Emphasis.

ELECTRON SURFACE INTERACT
This command defines an electron-surface interaction model for a single electron species
on a specified domain with the syntax:

ELECTRON SURFACE INTERACT, PRIMARY = string, SIDESET = int [... int],
SCATTER_TABLE = string, SECONDARY = string
[, QPMIN_FUN function-set] [, QPMIN_FLOOR real] [, ECUTOFF real]

The PRIMARY keyword defines the primary (incident) electron species, and the SIDESET
keyword defines the spatial domain as the union of one or more sidesets. The SCATTER_TABLE
keyword defines the data table used for the scattering, loaded with the ELECTRON
SURFACE DATABASE command. The SECONDARY keyword defines the secondary electron
species, which can be the same as the primary. In typical use, a secondary will be
created with smaller charge and lower energy than the primary.

The optional QPMIN_FUN and QPMIN_FLOOR keywords define a minimum charge weight
for creating secondaries:

qpmin(t) = max(scale× fun(t), qpmin_floor).

By default, qpmin(t) = 0, and qpmin_floor = 0 if only the QPMIN_FUN keyword is spec-
ified. This keyword uses the standard Nevada function syntax ‘FUNCTION int [SCALE
real]’ to define the function number and optional scale factor. The qpmin_floor value
defines an absolute minimum charge value that can be created. Similarly, the optional
ECUTOFF keyword defines a minimum energy (in MeV) for creating secondaries; the
default is ECUTOFF = 0.

In principle, this command is set up to support both heating and scattering, since it is
much more efficient to handle the two together if both features are needed. However,
heating is not currently implemented.

PARTICLE BALANCE [options]
This keyword controls the dynamic load balancing of the particle workload in parallel
simulations. Available options are, in order:
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TRIGGER = real
Controls when load balancing is attempted by comparing the specified value to
the current imbalance.

TARGET = real
Specifies the imbalance that the load-balancing algorithm attempts to achieve. A
perfectly balanced particle workload has an imbalance of 1.0.

MIN_TOL_INCR = real
Specifies the fractional amount above the imbalance obtained at the last balance
before rebalancing is attempted.

MIN_PART_PER_CELL = real
Specifies the minimum average number of particles per cell required before load
balancing is attempted.

MAX_STEP_COUNT = int
Specifies the maximum number of time steps after balancing occurs before rebal-
ancing will be attempted again.

ZOLTAN = parameter_name "parameter_value"
Provides advanced user control over Zoltan library parameters by accepting pairs
of values: an identifier for the parameter name and a string containing the param-
eter value (enclosed in quotes even if the value is numeric). Refer to the Zoltan
documentation for a description of the available parameters.

Time history diagnostics indicating the instantaneous and cumulative particle load im-
balance are provided in parallel simulations. When dynamic load balancing is enabled
the unbalanced values of these imbalance time histories are also included. The total
number of elements exported between processors to balance the particle workload for
the current time step is also provided as a time history diagnostic. Both absolute and
normalized (to the local element count scaled by ratio of the difference between the
local and average local particle count to the local particle count) values are provided.

PARTICLE MERGE
This keyword controls the merging of particles with the syntax:

PARTICLE MERGE, [SPECIES = name1 [... nameN]] | EXCLUDE = name1 [... nameN]],
CYCLE INTERVAL = int, TRIGGER = int [int]
[, options]

By default, the merger operates on all particle species. The SPECIES keyword defines
a list of species on which the merger operates, while the EXCLUDE keyword defines a
list of species on which the merger does not operate. These two keywords are mutually
exclusive.

The CYCLE INTERVAL keyword is required and controls the frequency of merging. The
TRIGGER keyword, also required, specifies the minimum number of particles of a single
species in an element that will trigger an attempt to merge those particles. It has
an optional second lower value (trig2 ) that specifies the number required to continue
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the merge operation after some of the particles have been rejected for merging by the
merge algorithm. If trig2 is not supplied, it is set to 90% of the TRIGGER value.

Available options are, in order:

TARGET = int
Specifies the target number of particles to remain in the cell after a successful
merge; its default value is 50% of the TRIGGER value.

BLOCK = int [int ...]
By default, particles in all element blocks will be merged. However, if one or more
element blocks are specified with the BLOCK keyword, only particles in elements
of the specified element blocks will be merged.

SUBGRIDS = int (3)
Provides a scale factor for sub-gridding each element, defaulting to 3. The number
of actual sub-elements used will be the cube of this value.

MAX_ITERATIONS = int (1)
Specifies the number of iterations used in testing for particle rejection due to
thermal velocities much larger than the mean thermal velocity. Default is 1.

VTH_FRAC = real (8.0)
Specifies the multiple of the thermal velocity above which a particle will be re-
jected due to large thermal velocity. Default is 8.0.

QTOT_FRAC = real (5.0)
Specifies the rejection of heavyweight particles. Any particle whose charge is more
than this value times the mean particle charge will be rejected. Default is 5.0.

QMAX_OVER_QMIN = real (2.0)
Specifies the nominal ratio of the maximum and minimum charge of any particle
in an element after merging has been performed. Default is 2.0.

SPREAD = real (1.0)
Specifies a scale factor determining the size of the volume into which merged
particles associated with a single sub-grid region will be positioned. Default is
1.0.

QERR_TOL = real (1.0e-6)
Controls merge rejection due to nodal charge errors. The merge will be accepted
only if the sum of charge errors over all element nodes is less than this value times
the total charge in the element. Default is 10−6.

QLOW_TOL = real (0.2)
Controls merge rejection due to low-weight merged particles. The merge will be
accepted only if the minimum charge of any merged particle is greater than this
value times the mean charge of all merged particles in the element. Default is 0.2.

EMAX_TOL = real (4.0)
Controls merge rejection due to high-energy merged particles. The merge will be
accepted only if maximum energy of any merged particle is less than this value
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times the maximum energy of any of the original, pre-merged particles in the
element. Default is 4.0.

PARTICLE PRELOAD
Preloads the specified BLOCKS with the specified particle distribution using the syntax:

PARTICLE PRELOAD,
BLOCK int [int ...]
SPECIES = string
[COUNT int int int]
DENSITY = [real | DISTRIBUTION int]
MOMENTUM = [X real Y real Z real | DISTRIBUTION int]
[TEMPERATURE = real]
[POSITION = DISTRIBUTION int]

END

Because the particle preload command does not adjust the electromagnetic fields, the
user is responsible for ensuring the initial system is charge- and current-neutral. Since
only one species can be preloaded at a time, this means the particle preload commands
will come in pairs. Options for particle preload are as follows:

COUNT int int int
Specifies three integers whose product is the number of particles loaded per ele-
ment. These integers denote the size of a 3D lattice which distributes the inserted
particles uniformly throughout the element. If not supplied, the default is “1 1 1”,
in which case a single particle is loaded at each element’s barycenter. In order to
create current-neutral distributions when a mean thermal temperature is specified
using the TEMPERATURE keyword, pairs of particles will be created (with opposite
velocities) at each location.

DENSITY real | DISTRIBUTION int
A real value specifies the particle density in units of m−3. Optionally, a spa-
tial distribution may be specified for the density, where the integer refers to the
distribution ID that specifies a scalar density distribution for the preload.

MOMENTUM vector | DISTRIBUTION int
A vector value specifies the mass normalized momentum of preloaded particles
in units of m/s. Optionally, a spatial distribution may be specified for the mo-
mentum, where the integer refers to the distribution ID that specifies a vector
momentum distribution for the preload.

TEMPERATURE real
Optionally specifies the mean temperature of the Maxwellian distribution (in the
rest frame) in units of eV. The default value is zero.

POSITION DISTRIBUTION int
Optionally specifies a spatial distribution for particle position, where the integer
refers to the distribution ID that specifies a vector position distribution for the
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preload that perturbs the initial particle insertion location from the element lattice
locations. Beware that this is not checked for consistency within the element
boundaries.

PRELOAD DISTRIBUTION int
Specifies a scalar or vector distribution function for the PARTICLE PRELOAD command
using the RTC functionality. The command block must be terminated with an END
key.

PARTICLE SORT [options]
Controls the sorting of particles. Available options are:

CYCLE INTERVAL int
Controls the frequency of sorting. The default is to sort every cycle.

CELL
Sorts particles by cell (default).

SPECIES
Sorts particles within a cell by species.

BLOCK = int [int ...]
By default, particles in all element blocks will be sorted. If one or more element
blocks are specified with this option, only particles in elements of the specified
element blocks will be sorted.

6 Framework keywords for UTDEM

This section describes keywords inherited from the Nevada framework, which is shared with
the alegra application [3]. These keywords must be placed within the physics block (defined
by the keyword UNSTRUCTURED TD ELECTROMAGNETICS).

6.1 Block Options

The BLOCK keyword defines a finite-element block, to associate a mesh block ID () with a
material definition with the syntax:

BLOCK {int | int TO int}
MATERIAL int

END

Note that END is required. Most block controls available in alegra are not relevant to
EMPHASIS, but the following may be used:
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DELETION CYCLE int
Specifies the cycle at which the element block is to be deleted from the problem.

DELETION TIME real
Specifies the time at which the element block is to be deleted from the problem.

DELETE DATA
Deletes the element block by deleting all vertex, edge, face, and element data associated
with the block. The coordinates are reset to their original value and the block is filled
with void.

DELETE TOPOLOGY
Deletes the element block by deactivating all vertices, edges, faces, and elements asso-
ciated with the block.

6.2 Function Specification

The FUNCTION keyword allows the user to define a function, of the form f(x), from a selection
of commonly used options. The specified function(s) will be referenced by an integer identifier
when used by other input deck commands. The following functions are available:

FUNCTION int [LINEAR (default) | SPLINE]
real real
real real
...

END
Defines a function as a table of real ordered (x, f(x)) pairs. A valid function must
specify at least two pairs, and the END keyword is required.

A default, predefined, constant function is provided with ID 0, equivalent to

FUNCTION 0
-REAL_MAX/2. 1.
REAL_MAX/2. 1.

END

Because this function uses ID 0, any user-specified function cannot reuse the identifier
0 (any positive integer may be used).

The optional keywords, LINEAR and SPLINE, define how values between the table points
are calculated. With the default LINEAR interpolation, values are interpolated linearly
between the table points and extrapolated to zero order outside the table endpoints.
This gives a C0-continuous result bounded by the table values. For SPLINE interpo-
lation, Catmull-Rom cubic splines are used [3], which are guaranteed to pass through
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the table points, and will be C1-continuous within the specified range. However, inter-
polated function evaluations are not bounded by the table values, so undershoots and
overshoots will be produced. Addition of “control” points to the table can help control
the behavior of the spline near sharp transitions or discontinuities.

FUNCTION int GAUSSIAN [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH real
(1.0)]

f(x) = scale× exp

(
−(x− shift)2

width2

)
.

FUNCTION int DOUBLE EXPONENTIAL [, SCALE real (1.0)] [, SHIFT real (0.0)] [, ALPHA
real (0.0)] [, BETA real (0.0)]

f(x) = scale× (exp [−alpha× (x− shift)]− exp [−beta× (x− shift)]) .

FUNCTION int SINE [, SCALE real (1.0)] [, SHIFT real (0.0)] [, FREQUENCY real
(0.0)]

f(x) = scale× sin (frequency× x+ shift) .

FUNCTION int SINE SQUARED [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH real
(0.0)]

f(x) = scale× sin2

(
π(x− shift)

width

)
, 0 < x < width.

FUNCTION int TRIANGLE [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH real
(0.0)]

f(x) =


scale×

(
x− shift

0.5× width

)
, 0 ≤ x ≤ width/2,

scale×
(

1− x− shift− 0.5× width
0.5× width

)
, width/2 ≤ x ≤ width.

6.3 Time Step Controls

The following time step controls are available in addition to the TIME STEP MOD option
described in Section 4.

GRADUAL STARTUP FACTOR real (0.01)
Specifies the factor by which the initial physics-based time step should be multiplied.
The default value is 0.01.
This has the effect of gradually marching into an abrupt transient. This value should
always be greater than zero and less than or equal to 1.0; for UTDEM, the value is
normally set to 1.0.
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MAXIMUM INITIAL TIME STEP real (0.0)
Specifies the maximum initial time step. It is useful where unusual transients would
otherwise result in an instability in the starting time step. Ignored if set to zero.

MAXIMUM TIME STEP LIMIT real (1.e30)
Specifies a maximum time step value that will never be exceeded during the simulation.

MAXIMUM TIME STEP RATIO real (1.2)
Specified the maximum ratio by which a time step may grow from one cycle to the
next.

MINIMUM TIME STEP real (1.e-20)
Specifies the minimum permissible time step. If the stable time step is computed to
be less than this value, the calculation will cease and write the final output records for
a normal completion.

CONSTANT TIME STEP real
Specifies a constant time step for the entire simulation.

If no CONSTANT TIME STEP is specified, UTDEM determines a time step based on the
Courant stability criteria. This can provide a starting point for setting the time step.
However, for the unconditionally stable SECOND ORDER formulation, a much larger time
step may be utilized. If this is done, the solution will remain stable but the required
conjugate-gradient iterations required for system solution at each cycle will increase.
Generally, for large simulation times, the overall simulation CPU time will be reduced
by increasing the time step.

6.4 Initial Refinement

The DOMAIN keyword defines domain-level (i.e., global) options with the syntax:

DOMAIN
[options]

END

The domain options specify behavior that is not broken down to the block level, so will apply
to multiple blocks. For EMPHASIS, only the initial refinement option available in alegra
is relevant. This capability allows the resolution of a genesis file to be increased inline,
after the parallel decomposition, which could be useful when attempting to run with very
large and/or detailed mesh files. For each level of refinement, it will increase the resolution
of a tetrahedral or hexahedral mesh by a factor of eight by splitting each refined edge into
two new sub-edges. At present, it cannot refine hybrid meshes.

The syntax for initial refinement is:
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DOMAIN
MAXIMUM LEVELS = int
INITIAL REFINEMENT
[ geometry ]

END
END

The MAXIMUM LEVELS keyword specifies the number of levels of refinement to be performed,
and is required. Options for geometry within the INITIAL REFINEMENT block are:

ALL BLOCK
All blocks will be refined to the highest refinement level.

BLOCK BOUNDARY
Elements on the boundaries of all element blocks will be refined to the highest refine-
ment level.

SIDESET int
Refines the sideset to the highest refinement level.

SIDESET int SPHERE real vector
Refines the sideset to the highest refinement level while mapping surface nodes to a
sphere of radius real centered at position vector.

SIDESET int CYLINDER real vector vector
Refines the sideset to the highest refinement level while mapping surface nodes to a
cylinder of radius real with axis defined by the vector pair.

SIDESET int RECONSTRUCT
Reconstructs a local smooth surface through the sideset nodes using approximate sur-
face normals at these nodes.

BLOCK int
Refines the specified element block to the highest refinement level.

BLOCK int, LEVEL int
The element block specified will be refined to the refinement level specified. The
specified refinement level must be less than the maximum level set by the MAXIMUM
LEVELS keyword.

Note that some uses of these options will generate irregular meshes, where an element may
neighbor another elements that is refined to one level higher or lower than itself.
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6.5 Initial Conditions

USER DEFINED INITIAL CONDITION, variable
[, BLOCK int int ... ]
[, MATERIAL int int ... ]

"
[c-code declarations]
[c-code initializations]
[c-code conditionals]
[c-code assignments]

"
END

This provides a general method for initializing known field variables on the mesh, using
the runtime compiler (RTC) feature (see Appendix E for more information on writing RTC
functions and for using aprepro with RTC functions). The variable is a name, such as
ELECTRIC_FIELD_PROJECTION. Any material, element, node, edge, or face variable (that is a
scalar or space-dimensional vector field) may be used, but the name must correspond to the
name in the RUNID.out file (including underscores), and is not necessarily the same name
as is printed in the RUNID.exo file that may have the material number or the vector/tensor
component designator appended to it. For some variables, this feature may give the user
more than enough rope to hang themselves with, so if you have trouble with this feature
contact alegra-help@sandia.gov to get a developer to assist you. Beware in particular that
no attempt is made to ensure that ∇ ·D− ρ or ∇ ·B are zero.

As a C-language function, the double-quoted body has available one input array of coor-
dinates, coord, and one output array of field values, field. The input coordinates are set
prior to executing the quoted function, appropriate to the output variable centering (node
coordinates for node variables, cell midpoint coordinates for element variables, etc.). The
user may overwrite the coord array variables, but they are only RTC temporary variables,
and are deleted after execution of the RTC function. More importantly, the field array
variables that the user defined RTC function acts on are also RTC temporary variables ini-
tialized to zero. They are copied over to the appropriate EMPHASIS variables after RTC
function execution.

The function is expected to use the coordinates in some way to set the return value. The
return value is an array whose length depends on the type of variable. A scalar variable
has length one, a vector has length 3 (for 3D), etc. Note that in the special case of edge-
and face-centered variables, the user specifies a vector field, which is projected onto the
edges/faces to determine the scalar values.

The optional BLOCK keyword can be used to trigger the initial condition function only for
certain element blocks, specified by their ids. For nodal variables, the function is called if
the node touches any element that is contained in the block(s) specified.
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The optional MATERIAL keyword can be used to apply the initial condition function to
only those elements which have the given material(s) present. Nodal variables will be set if
they touch an element with the designated material(s) present. The integers must specify
material ids that are specified in the input deck.

A presentation of the capabilities and limitations of runtime compiled ’C’ functions is
included in Appendix E.

Example:

$ The ELECTRIC_FIELD_PROJECTION is an edge-based scalar,
$ so specify the vector field to be projected onto the edges
user defined initial condition, ELECTRIC_FIELD_PROJECTION
"
double pi = acos(-1.0);
field[0] = 0.0;
field[1] = 0.0;
field[2] = sin(pi*coord[0])*sin(2.0*pi*coord[1]);

"
end

6.6 Periodic Boundary Conditions

PERIODIC BC, SIDESET int, TRANSLATE, X float Y float Z float, SIDESET int,
TOLERANCE float (1.e-5)

This applies a periodic boundary condition between the two, generally planar, sidesets
given. The TRANSLATE vector points from the first SIDESET to the second and must start
and end exactly on those sideset planes. The TOLERANCE parameter is often required to
be significantly smaller than the default 1.e-5, generally 1.e-8 is more effective.

The user is responsible for creating a mesh on the two periodic surfaces such that all the
edges align, which is not always a trivial task. For example, unless measures are taken, CU-
BIT will almost certainly not align in the required manner. Assuming the proposed periodic
surfaces are nice flat rectangles, such as the ends of a box, a method in CUBIT which has
been show to create the desired aligned surface mesh is the following. After setting appro-
priate mesh size on the volume or surfaces, mesh the surfaces with "surf 1 2 scheme map"
then "mesh surf 1 2" which will create nice quads. Then split these into triangles by first
setting "set qtri split 4" followed by "qtri surf 1 2". This will place a node at the center of
each quad and then split into 4 triangles.
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7 Simulation Control Keywords

These keywords are framework keywords [3] which are required for a successful UTDEM
simulation and appear outside the UNSTRUCTURED TD ELECTROMAGNETICS block. An example
of typical simulation control keywords is shown in Figure 3.

termination time = 1.e-8

emit screen, cycle interval = 1
emit plot, cycle interval = 10
emit hisplt, cycle interval = 1

plot variable
electric_field
econ

end

Figure 3. Typical simulation and output control keywords.

7.1 Edgeset Keyword

EXODUS EDGE SETS (int, int, ...)
Specifies a list of sideset ids that exist in the Genesis file that are to be converted
to Nevada edgesets. The list of sideset ids must be enclosed in parentheses. Virtual
edgesets defined by a PATH keyword should not be included in this list; the sidesets on
this list are the ones encoded by the preprocessor or the mesh generation software for
the purpose of being converted to edgeset(s) by the Nevada framework. This step is
necessary because the standard ExodusII file format has no notion of a list of edges.

7.2 Simulation Termination Keywords

The following keywords control termination of a simulation. If multiple termination keywords
are specified, the simulation will terminate when any of the criteria are satisfied.

[EXACT] TERMINATION TIME real
Total time for which to run the simulation. If the optional EXACT keyword is spec-
ified, the time steps for the last ten cycles will be adjusted as necessary to ensure
that the calculation terminates at the exact time specified. Otherwise, by default the
termination time may be overshot by some fraction of a time step.
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TERMINATION CYCLE int
Total cycles for which to run the simulation.

TERMINATION CPU real
Specifies the CPU time, in seconds, at which the calculation is to terminate. This termi-
nation control must be used together with a TERMINATION TIME and/or a TERMINATION
CYCLE keyword.

7.3 Restart Keywords

Controls for restarting from an existing simulation are described briefly below.

RESTART DUMPS int (2)
Retain the last number of restart dumps, defaults to 2.

READ RESTART DUMP int
Restart simulation by reading the restart dump with the given index. Restart will
fail if no dump with the given index exists. If the special value -1 is given, the latest
available restart dump is used by consulting the dump list file, problem_name.dpl. If
this file is empty or does not exist, a new simulation is started.

READ RESTART TIME real
Restart simulation at the closest restart dump to the given time. If a negative time is
given, a new simulation is started.

The frequency at which restart dumps are written is controlled by the EMIT RESTART
keyword. A restart dump is also created at the end of the simulation.

Upon restart, plot-dump data is appended to the problem_name.exo file. However, rather
than appending to the problem_name.his file, additional files are created with names prob-
lem_name.his_0, problem_name.his_1, etc. These must be concatenated together with the
original problem_name.his to generate the entire time history.

7.4 Output Keywords

EMIT SCREEN, output-frequency
Print status line to standard out at the requested frequency.

EMIT PLOT, output-frequency
Write plot variables to Exodus file at the requested frequency.

EMIT HISPLOT, output-frequency
Write global variables to hisplt file at the requested frequency.
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EMIT RESTART, output-frequency
Write restart dumps at the requested frequency.

The output-frequency specification takes one of the following forms:

TIME INTERVAL real [output-range]
Output occurs at the specified simulation time interval. Because the simulation time
step is not modified, the actual write time may overshoot the requested interval by
some fraction of a time step.

EXACT TIME INTERVAL real [output-range]
Output occurs at the exact simulation time interval specified. The time step is modified
such that output is triggered at the requested interval.

CYCLE INTERVAL int [output-range]
Output occurs at the specified cycle interval.

WALL CLOCK INTERVAL number | hms [output-range]
Output occurs at the specified wall clock interval. Wall clock time must be specified
either as an integer or real number of seconds, or in the form 12h 34m 56s.

NUMBER int [output-range]
Output occurs the specified number of times over the course of the simulation. If an
output-range is specified, then the number of output triggers will occur within that
range.

The output-range option takes one of the following forms:

FROM number [TO number]
Specifies beginning (and optionally ending) values that form a range. The units of the
range are assumed to be the same as the units of the output-frequency specification.

FROM TIME real [TO real]
Specifies a simulation time range.

7.5 Plot Variables

Variables to be written to the Exodus [9] plot file are specified with the following syntax:

PLOT VARIABLES
[ALL VARIABLES]
[NO DEFAULT OUTPUT]
[NO REGION VARIABLES | ALL REGION VARIABLES]
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[NO MATERIAL GLOBALS | ALL MATERIAL GLOBALS]
[NO UNDERSCORES]
registered-variable-name, [modifier]
registered-variable-name, [modifier]
...

END

Valid plot variables for UTDEM are shown in Table 1.

Table 1. Plot Variables for UTDEM

Variable Name Type Explanation
ELECTRIC_FIELD vector Electric field (E).
MAGNETIC_FIELD vector Magnetic field (H).
MAGNETIC_FLUX_DENSITY vector Magnetic flux density (B).
CUR_DEN vector Current density for external J-sources.
ECON scalar Electrical Conductivity (σ), from Simple Elec-

trical, RIC Electrical and Breakdown Electri-
cal material models, and external J-sources.

ELECTRON_CONCENTRATION scalar Electron concentration, from HP Gas material
model.

NEGATIVE_ION_CONCENTRATION scalar Negative ion concentration, from HP Gas ma-
terial model.

AVALANCHE_RATE scalar Avalanche rate, from HP Gas material model.
ATTACHMENT_RATE scalar Attachment rate, from HP Gas material

model.
PERMITTIVITY scalar Electric Permittivity (ε) from material model.
PERMEABILITY scalar Magnetic Permeability (µ) from material

model.
RELUCTIVITY scalar Magnetic Reluctivity (µ−1) from material

model.
SPEED_OF_LIGHT scalar Speed of light from material ((εµ)−1/2).
IMPEDENCE scalar Real intrinsic impedence of the material (

√
µ
ε
)

Additional valid plot variables for UTDEM_PIC are shown in Table 2. Averaged variables,
prefixed with AVE_, are quantities averaged over cycle intervals. An individual particle
species’ charge density is separately computed only if it is referenced using the RHO_species
or AVE_RHO_species plot variables, or explicitly defined with the REGISTER_DENSITY op-
tion of the DEFINE SPECIES input command (34). If the AVE_RHO_species plot variable is
listed then EMPHASIS calculates the RHO_species variable, but the non-averaged charge
density is only output if specifically requested in the plot variable list. If there are any
remaining particle species whose charge densities are not computed separately due to one of
these two reasons, their charge densities are combined and available in aggregate using the

61



CHARGE_DENSITY plot variable. Note that multiple PMC symmetry planes must be defined
by separate side sets for the PIC_CURRENT variable to be accurate.

Table 2. Plot Variables for UTDEM_PIC

Variable Name Type Explanation
PIC_CURRENT vector Particle current applied to the mesh.
AVE_PIC_CURRENT vector Average PIC current.
RHO_species scalar Charge density of species.
AVE_RHO_species scalar Average charge density of species.
AVE_ELECTRIC_FIELD vector Average electric field.
AVE_MAGNETIC_FIELD vector Average magnetic field.
CHARGE_DENSITY scalar Aggregate species charge density.
DIVD_M_RHO scalar ∇ ·D− ρ.

For a complete list of available plot variables and options, consult the Alegra manual [3].

Time-history variables to be written to the hisplt file are specified with the following
syntax:

HISTORY PLOT VARIABLES
[NO DEFAULT OUTPUT]
[NO REGION GLOBALS]
[NO MATERIAL GLOBALS]
[NO UNDERSCORES]
registered-variable-name, [modifier]
registered-variable-name, [modifier]
...

END

Time-history data for all specified global variables, and for spatial locations specified in the
TRACER POINTS keyword, will be written to the hisplt database file, problem_name.his. By
default, all global variables will be written. Tracers located in wedge elements will not be
found.

7.6 Linear Solver Keywords

Solution of an EMPHASIS problem requires specification of a linear solver, which uses the
AZTEC syntax [12]. A typical example is:

aztec
solver, cg
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precond, none
scaling, sym_diag
output, none
tol = 1.e-9
polynomial order, 1
max iterations, 1000

end

This specifies the conjugate gradient (cg) method with no preconditioning, but with sym-
metric diagonal scaling. No output is requested from AZTEC after each solve to a tolerance
level of 1.e-9, with a maximum number of cg iterations set to 1000 (default is 500). The
POLYNOMIAL ORDER should always be set to “1” for efficiency.

The next example again specifies cg, but with jacobi preconditioning and without scaling.
The convergence norm is set to be relative to the rhs rather than default, which is the initial
residual. If large conductivity values (on the order of 1 or higher) exist in the simulation, the
convergence norm must be set to rhs to achieve convergence due to numerical considerations.

aztec
solver, cg
precond, jacobi
scaling, none
convergence norm, rhs
output, last
tol = 1.e-9
polynomial order, 1

end

For convergence with very large time steps, the Multi-Level (ML) preconditioner should
be specified. The following settings are typical to achieve a successful ML solution with
limited testing. Others are possible and perhaps even desirable. The Alegra-MHD manual
[2] may provide some guidance for advance ML settings.

aztec
solver, cg
precond, jacobi
output, none
tol = 1.e-9
polynomial order, 1
multilevel
fine sweeps = 1
fine smoother = Hiptmair
coarse sweeps = 6
coarse smoother = Hiptmair
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multigrid levels = 10
interpolation algorithm = AGGREGATION
smooth prolongator
hiptmair subsmoother = MLS

end
end

This final example mimics as closely as possible using Aztec the solver technology used
in the legacy unstructured code:

aztec
solver, cg
precond, dom_decomp
subdomain solver, icc
type overlap, symmetric
output, none
tol = 1.e-15
polynomial order, 1

end

7.7 Debug Mode Keyword

Specific code debug information at run time can be requested using the following syntax:

DEBUG MODE: debug-opt
Some relevant values for debug-opt are:

LOCATION
Provides a quick way to observe in the standard out stream progress through the
code execution, and in particular to see where the most time is being spent.

SIGNALS | FPE
These will catch and report events such as floating-point exceptions.

AUTO ITS BEAM SETUP
This mode is specific to PIC. It requests detailed data to compare the auto-fit
ITS beam setup with the corresponding ITS simulation that built the input PFF
file. The results are placed in the file auto_its_beam.dat.

The auto_its_beam.dat file contains a table with an entry for each ITS subsurface fitted
to at least one emitting face of an Emphasis beam-emission sideset, with the columns listed
in Table 3.
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Table 3. Column listing with descriptions for the
auto_its_beam.dat debug file.

Column Description
EmSurf# Emphasis emission surface number (1–N)
SideSet Emphasis Sideset ID
ITSsurf# ITS surface # in the PFF file
ITSsubsurf# Subsurface # of the ITS surface: 1 − Nudiv × Nvdiv, where Nudiv and

Nvdiv are the two ITS surface subdivision parameters, and the 1-D # is
v + Nvdiv× (u− 1) (ITS ordering).

#-cells # emitting faces fitted to the subsurface
ITS-emitfrac Total emission fraction (per single source particle) for the subsurface
area Sum of Emphasis emission face areas fitted to subsurface
emDensity emitfrac/area

8 Material Models

8.1 Material Block

Defines a model or models for a material with the syntax:

MATERIAL int
MODEL int
...

END

Relates the material identified with the index int to material MODEL(s). For UTDEM, only
one model applies to each material.

8.2 Material Model Block

Defines a material model with the syntax:

MODEL int model-name
[PARAMETER value]
[PARAMETER value]
...

END

Relates the material model identified with the index int to a specific model type defined by
the name model-name and defines parameters specific to that model.
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8.3 Material Models for UTDEM

The following models are valid model-name options for UTDEM. Every model will specify
EPS, the relative permittivity of the material (ε), MU, the relative permeability of the material
(µ), and SIGMA (or SIGMA0), the conductivity of the material (σ). Models that have a
NTIMESTATES parameter must have it set to 3 for proper UTDEM functionality. If not, the
code will halt and notify the user.

8.3.1 Simple Electrical

SIMPLE ELECTRICAL
EPS real
MU real
SIGMA real
[NDOF int]
[NTIMESTATES 3]

END

This is the simplest electrical material model, specifying constant values for ε, µ, and σ. A
simple usage example is

MODEL 1 SIMPLE ELECTRICAL
EPS 2.
MU 1.
SIGMA 1.e-3

END

The NDOF and NTIMESTATES keywords are only needed for the specific case of UTDEM
PIC simulations with multiple element blocks, some using Simple Electrical, and others using
HP Gas Electrical. In this case NDOF and NTIMESTATES must have the same values for
both models. In particular, NTIMESTATES = 3 to consistently handle time-dependent
conductivity.

8.3.2 Breakdown Electrical

BREAKDOWN ELECTRICAL
EPS real
MU real
SIGMA0 real
THRESHOLD real
SIGMA_BKDN real

END
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The BREAKDOWN ELECTRICAL model is a simple material breakdown model whereby the elec-
tric field in each element is monitored and if it reaches THRESHOLD V/m, the conductivity in
that element is changed to SIGMA_BKDN, where it remains for the remainder of the simulation.
The UPDATE MAT STATE keyword must be used with this model. A simple usage example is

MODEL 2 BREAKDOWN ELECTRICAL
EPS 2.
MU 1.
SIGMA 0.
THRESHOLD 2000.0
SIGMA_BKDN 1.e7

END

8.3.3 HP Gas Electrical

HP GAS ELECTRICAL
EPS real
MU real
SIGMA0 real
DENSITY real
WATER_FRACTION real
[GASNAME "string"]
[XIEV real]
[NDOF int]
NTIMESTATES 3
[SCATTER "string"]
[NKEBINS int]
[KEMIN real]
[KEMAX real]
[NSUBCYCLE int]
[LIMIT_PROB real]
[ELECTRON_EMIN real]

END

The HP GAS ELECTRICAL model is a high-pressure gas chemistry model containing the addi-
tional parameters DENSITY, WATER_FRACTION, XIEV, and NDOF, and optional parameters to
enable angular scattering of electrons from the gas (see below). The gas density is specified
in MKS units, kg/m3. The XIEV and NDOF parameters are optional. The parameter XIEV can
be used to override the default mean ionization energy of the gas (34 eV). If not specified,
NDOF will default to the number of nodes in an element, in which case the model variables
will be node based. Setting NDOF to one will make the model variables element based. The
optional GASNAME parameter can be used to specify the gas. The model will read the gas
parameters from the file “gasname.dat” in the run directory. If not specified, the default
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gas model is the ITT model for air which can also be specified explicitly with the string
itt_air. Note that WATER_FRACTION is a required parameter for itt_air, but is not used
for an explicitly requested gas file.

In a PIC simulation, the HP GAS ELECTRICAL model can used in combination with the
GAS DRAG command to enable interaction of electrons with the background gas. This applies
a drag force to slow down the electrons, but does not change their direction. The SCATTER
parameter enables angular scattering of the electrons. The string takes exactly the same form
as the mixture parameter for the KINETIC GAS ELECTRICAL model, and uses the same cross
section data file (see below). The optional parameters NKEBINS, KEMIN, and KEMAX correspond
to the KINETIC GAS ELECTRICAL parameters NEBINS, EMIN and EMAX respectively, and with
the same defaults (renamed here to avoid confusion with electric field bins). Elastic scattering
is enabled with a table of the total cross section (summed over all processes) for each gas
on the specified energy grid. The optional NSUBCYCLE and LIMIT_PROB keywords provide
user control to reduce the maximum probability of interaction, P = nσv∆t, for very high
density gas. By default NSUBCYCLE = 1. If a value greater than 1 is entered, the scattering is
done NSUBCYCLE times per PIC timestep, with ∆tscat = ∆tPIC/NSUBCYCLE. The LIMIT_PROB
explicitly limits P by brute force for all processes at all energies.

The ELECTRON_EMIN parameter (in eV) requests that electrons be killed if their energy
falls below this value. Typically, this value will be near the ionization threshold for the
gas. Killing electrons in space will corrupt ∇ · D − ρ diagnostics, but here the electrons
are presumably being killed where the conductivity is non-zero. In this case the ∇ ·D − ρ
diagnostics are already corrupted, and additional errors from killing particles are reduced
over time by being conducted away.

A simple usage example is

MODEL 3 HP GAS ELECTRICAL
EPS 2.
MU 1.
SIGMA0 0.
DENSITY 1.23
WATER_FRACTION 0.02
NDOF 1
NTIMESTATES 3

END

8.3.4 Foam Electrical

FOAM ELECTRICAL
EPS real
MU real
SIGMA0 real
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COEF1 real
COEF2 real
COEF3 real
DENSITY real
NDOF int
NTIMESTATES 3

END

The FOAM ELECTRICAL model is an empirical radiation-induced conductivity (RIC) model
for foam that takes the following form:

σ = σ0 + ε
(
c1γ̇

2 + c2γ̇ + c3

)
, (8.10)

where σ is the conductivity in Mho/m, σ0 is the dark conductivity in Mho/m, ε is the permit-
tivity in F/m, c1, c2, and c3 are the coefficients COEF1, COEF2, and COEF3 in (Mho/F)/(Rad/s),
and γ̇ is the dose rate in Rad/s.

If the DENSITY (pounds/ft3) is specified as either 5 or 10, the correct coefficients will
be supplied by the code for polyethylene foam and any supplied coefficient values will be
ignored. Supplying other densities will generate an error. If DENSITY is not supplied, arbi-
trary coefficients can be supplied and will be used. In either case, the user must supply the
appropriate dielectric constant. Typical values for polyethylene foam are ε = 1.105ε0 for a
density of 5 lbs/ft3, and ε = 1.2ε0 for a density of 10 lbs/ft3. Table 4 shows the code-stored
coefficients for 5 and 10 pound foams.

Table 4. Values for FOAM ELECTRICAL model coefficients

Density (lbs/ft3) 5 10
c1 1.963× 10−12 1.347× 10−12

c2 5.027× 10−1 8.265× 10−2

c3 −7.863× 108 −2.228× 107

8.3.5 HP Foam Electrical

HP FOAM ELECTRICAL
EPS real
MU real
SIGMA0 real
DENSITY real
WATER_FRACTION real
GASNAME "string"
VF real
XIEV real
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NDOF int
NTIMESTATES 3

END

The HP FOAM ELECTRICAL model is an experimental foam model based on the field-exclusion
foam model of Stringer and Dumcum [11]. This model is similar to HP Gas Electrical with
one additional parameter VF, the volume fraction of gas in the foam. The gas definition here
refers to the gas in the foam “bubbles”. SIGMA0 is the background conductivity of the gas
and EPS is the dielectric constant of the solid portion of the foam forming the bubble walls.

8.3.6 Kinetic Gas Electrical

KINETIC GAS ELECTRICAL
EPS real (1.0)
MU real (1.0)
SIGMA0 real (0.0)
P_TORR real
MIXTURE "‘/Estring"
[NO_ATTACHMENT]
[FRACTIONAL IONIZATION fractional-ionization-specification]
[PRIMARY string]
[SECONDARY string]
[EMIN real]
[EMAX real]
[NEBINS int]

END

The KINETIC GAS ELECTRICAL model is a gas chemistry model that handles collisions be-
tween electrons and molecules in a background gas kinetically. Only the MIXTURE and P_TORR
parameters are required. If not supplied, EPS, MU, and SIGMA0 default to values of 1.0, 1.0,
and 0.0, respectively. P_TORR is the pressure of the gas at standard temperature, in torr.
The MIXTURE parameter is a string containing space-delimited pairs, each pair comprised of
a string for the name of a gas molecule followed by a real value representing this molecule’s
fraction of the mixture (by volume). Note that the total of the fractions for all molecules in
the mixture must sum to one. If the fraction for the last gas is not specified, its value will
be computed automatically subject to this constraint. For example, the following MIXTURE
specification could be used as an approximate model for dry air: "N2 0.79 O2".

The NO_ATTACHMENT parameter is used to indicate that all attachment interactions should
be neglected; if not supplied, attachment will be modeled. The PRIMARY and SECONDARY
parameters provide the species names of two electron species that are used in the material
model when treating collisions. These are the only particles that will be considered as
incident electrons for collisions with the background gas molecules. The primary electron
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species is used for electrons which come from other sources in the problem, such as beam
or field emission surfaces. The secondary electron species is used by the material model
to create the electron byproducts of ionizing collisions with the background gas. If either
is unspecified, both default to the string electron. To compute the probability of any
interaction with the gas, the energy-dependent cross sections of the various interactions are
interpolated from a table that is constructed from data in the Cross Section Database (see
the CROSS SECTION DATABASE command for more details). Three input parameters are used
to control the construction of the table. The EMIN and EMAX parameters control the upper
and lower energy bounds of the table, respectively, and are specified in eV. Default values
are 10−1 and 105. The NEBINS parameter controls the number of bins into which the energy
range of the table is logarithmically divided, and its default value is 600. Consequently, the
default values for these three parameters provide 100 bins/decade.

The FRACTIONAL IONIZATION parameter is used to help control exponential growth in
particle count by providing a time-dependent function specifying minimum charge magnitude
qmin for secondary electrons created by an ionizing collision. If the magnitude of the charge
of a secondary electron to be produced by an ionizing collision, |qsec|, is less than qmin, an
ionization fraction Fion is computed using

Fion = |qsec|/qmin,

subject to the additional constraint that

Fion ≥ Fbase.

The probability of the collision is then reduced by Fion, and if the collision still occurs, qsec is
increased 1/Fion. There are two forms available for fractional-ionization-specification:

FUNCTION int [, SCALE = real] [, BASELINE = real]
Provides a time-dependent specification of qmin (in Coulombs). The SCALE parameter
defaults to 1.0 if not provided.

real [, SCALE = real] [, BASELINE = real]
Specifies a constant value, such that qmin is the product of the constant and the value
of the SCALE parameter.

In either case, the optional BASELINE parameter specifies the value of Fbase, which defaults
to 0.0. Finally, if the FRACTIONAL IONIZATION keyword is not provided, the fractional
ionization model is not used.

A database of gas cross section data must be available to the KINETIC GAS ELECTRICAL
material model. See the CROSS SECTION DATABASE command for how to specify this file. In
addition to the particle species specified by the PRIMARY and SECONDARY parameters, any
gas molecules in the gas mixture that have ionizing interactions will require a corresponding
positive ion species. Similarly, any gas molecules with attachment interactions will require a
corresponding negative ion species (assuming the NO_ATTACHMENT parameter was not spec-
ified). By convention, the model assumes the names of any required positive or negative
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ion species will be the name of the gas molecule with the suffix “_P” or “_N” appended,
respectively. If any of these particle species needed by the model are not explicitly defined
using the DEFINE SPECIES command above, the model will automatically attempt to define
them.

8.3.7 RIC Electrical

FOAM ELECTRICAL
EPS real (default 1.0)
MU real (default 1.0)
SIGMA0 real (default 0.0)
COEFFICIENT real
EXPONENT real
NDOF int
NTIMESTATES 3

END

The RIC ELECTRICAL model is an empirical radiation-induced conductivity (RIC) model
which takes the following form:

σ = σ0 + εKγ̇e,

where σ is the conductivity in Mho/m, σ0 is the dark conductivity in Mho/m, ε is the
permittivity in F/m, K is specified by COEFFICIENT in (Mho/F)/(Rad/s), γ̇ is the dose
rate in Rad/s, and e is specified by EXPONENT. Typical values for kapton are ε = 3.5ε0,
K = 3.23× 10−6, and e = 0.95.

A simple usage example is:

MODEL 4 RIC ELECTRICAL
EPS 2.
MU 1.
SIGMA0 0.
COEFFICENT 3.23e-6
EXPONENT 0.95
NTIMESTATES 3

END

8.3.8 Face PML

This material model is only supported by the Crank-Nicolson time integrator.

FACE PML
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EPS real (default = 1.0)
MU real (default = 1.0)
SIGMA real (default = 0.0)
NORMAL0_X real
NORMAL0_Y real
NORMAL0_Z real
INTERFACE_START0 real
LAYER_THICKNESS0 real
CENTER_X real (default = 0.0)
CENTER_Y real (default = 0.0)
CENTER_Z real (default = 0.0)
POLYNOMIAL_GRADING real (default = 4.0)
SCALE_FACTOR real (default = 0.01)
NDOF int
NTIMESTATES 3

END

FACE PML is a one dimensional sponge layer used to truncate domains. For some physical,
3D domain call Γ a planar surface which we wish to model as an “open boundary." We use
the Unsplit Perfectly Matched Layer (UPML) technique and therefore attenuate outgoing
waves by using a non-physical, anisotropic, dispersive material. The relative permittivity εr,
relative permeability µr, and electrical conductivity σ are passed to inputs EPS, MU, SIGMA
respectively. If these parameters are unspecified then vacuum conditions are assumed, i.e.
εr = µr = 1, and σ = 0. This layer should be impedence matched to the physical domain.
That is,

Z(ω) =
√

(ε+ iωσ)−1µ (8.11)

should be the same in the PML as the physical domain. In practice one selects these pa-
rameters identically to the physical domain although in principal only the ratio must remain
constant. Impedance matching is only guaranteed when truncating SIMPLE ELECTRICAL
materials with SIGMA =0.0.

Parameters NORMAL0_X, NORMAL0_Y, NORMAL0_Z define the outward normal for Γ. The
resulting vector need not be unit length, i.e the unit outward normal n is given by

n = |ñ|−1ñ, ñ = (NORMAL0_X,NORMAL0_Y,NORMAL0_Z). (8.12)

The vector

c = (CENTER_X,CENTER_Y,CENTER_Z) (8.13)

is point inside the physical domain. It must satisfy a condition, namely

(x− c) · n = ξ0 ≥ 0, ∀x ∈ Γ (8.14)
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where ξ0 is a non-negative constant. The value ξ0 determined by c must be passed to to
INTERFACE_START0. If the physical domain is convex then c may be any point in the physical
domain including Γ. For any physical domain, if c is chosen on Γ then ξ0 = 0.

The parameter LAYER_THICKNESS0 is the depth of the layer, `0. It is recommended that
the layer be meshed by sweeping from the surface Γ 15–20 elements deep. This formulation
is of course agnostic to element type although we have found improved results using wedges
aligned with n to truncate unstructured tetrahedral meshes. Call the argument passed to
SCALE_FACTOR α. By default this parameter is assumed to be α = 0.01. The minimum
relaxation time of the PML is given by

τ = α
`

c
, c =

c0√
εrµr

. (8.15)

While UPML are impedence matched in the continuum, discretization errors can induce
spurious reflections at the boundary of the PML and the physical domain. The standard
methodology to overcome this problem is to smoothly turn on the PML. We employ polyno-
mial grading to achieve this effect. Let p be the argument passed to POLYNOMIAL_GRADING.
By default this parameter is assumed to be p = 4. The PML is functionally graded such
that for some point x in the PML we have

1

τ̃(ξ)
=

1

τ

(
ξ − ξ0

`

)p
, ξ = (x− c) · n. (8.16)

Default parameters were selected so that a plane wave travelling incident to Γ would atten-
uate by -80 dB in 2`. For p = 0 we would have the spatial decay after 2` meters

20 log10(exp

(
−2`

cτ

)
) = 20 log10

(
exp

(
− 2

α

))
= −80 dB (8.17)

This gives α ≈ 0.2. Dividing by by the mean of x4 on (0, 1) gives 0.05. We then rounded
the value of α to the next smallest order of magnitude.

Note that while it may be tempting to reduce α to very low values (i.e 10−12) this will
increase the stiffness of the PML. Thus some balancing between reducing τ and increasing
layer thickness is required.

8.3.9 Edge PML

This material model is only supported by the Crank-Nicolson time integrator.

EDGE PML
EPS real (default = 1.0)
MU real (default = 1.0)
SIGMA real (default = 0.0)
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NORMAL0_X real
NORMAL0_Y real
NORMAL0_Z real
INTERFACE_START0 real
LAYER_THICKNESS0 real
NORMAL1_X real
NORMAL1_Y real
NORMAL1_Z real
INTERFACE_START1 real
LAYER_THICKNESS1 real
CENTER_X real (default = 0.0)
CENTER_Y real (default = 0.0)
CENTER_Z real (default = 0.0)
POLYNOMIAL_GRADING real (default = 4.0)
SCALE_FACTOR real (default = 0.01)
NDOF int
NTIMESTATES 3

END

Edge PMLs are used when two face PMLS are applied to truncate a corner. For example,
if physical domain is cube and two open boundaries meet at an edge. Call their physical
boundaries Γ0 and Γ1.

If ni is the outward normal of Γi, the center vector c and interface start locations ξi must
satisfy

ni · (x− c) = ξi ≥ 0,∀x ∈ Γ0 ∩ Γ1 (8.18)

If c is chosen as a point on Γ0 ∩ Γ1 then ξi = 0.

Scale factors, polynomials gradings, relative permittivities and permeabilities, and elec-
trical conductivities should agree between the two Face PMLs and the edge PML. If both
Face PMLs are meshed with swept wedges then an edge PML can be a structured hexahedral
mesh.

8.3.10 Node PML

This material model is only supported by the Crank-Nicolson integrator.

NODE PML
EPS real (default = 1.0)
MU real (default = 1.0)
SIGMA real (default = 0.0)
NORMAL0_X real
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NORMAL0_Y real
NORMAL0_Z real
INTERFACE_START0 real
LAYER_THICKNESS0 real
NORMAL1_X real
NORMAL1_Y real
NORMAL1_Z real
INTERFACE_START1 real
LAYER_THICKNESS1 real
NORMAL2_X real
NORMAL2_Y real
NORMAL2_Z real
INTERFACE_START2 real
LAYER_THICKNESS2 real
CENTER_X real (default = 0.0)
CENTER_Y real (default = 0.0)
CENTER_Z real (default = 0.0)
POLYNOMIAL_GRADING real (default = 4.0)
SCALE_FACTOR real (default = 0.01)
NDOF int
NTIMESTATES 3

END

Node PMLs are used when three face PMLS are applied to truncate a corner. A node PML
will also have three neighboring edge PMLs. For example, if the physical domain is a cube
and three open boundaries meet at node or vertex. Call their physical boundaries Γ0, Γ1,
and Γ2.

If ni is the outward normal of Γi, the center vector c and interface start locations ξ0, ξ1, ξ2

must satisfy

ni · (x− c) = ξi ≥ 0, ∀x ∈ Γ0 ∩ Γ1 ∩ Γ2 (8.19)

If c is chosen as a point as the point in Γ0 ∩ Γ1 ∩ Γ2 then ξi = 0.

Scale factors, polynomials gradings, relative permittivities and permeabilities, and elec-
trical conductivities should agree between all adjacent PMLs. If the Face PML are meshed
with swept wedges then the node PML may be meshed with structured hexahedra.

9 Hybrid FETD/FDTD

Presently only STDEM, which is classical Finite-Difference Time-Domain (FDTD), contains
both the Perfectly Matched Layer (PML) boundary condition and the Near-To-Far (NTF)
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field transformation. Therefore it remains useful for EM scattering and RCS simulations.
Additional useful keywords for STDEM can be found in [1].

A key requirement with HTDEM is that since it involves FDTD, it is conditionally stable
and the Courant stability condition must be met. If a very rapid instability is seen this is
the first place to look. For cubical cells with ∆ the globally smallest spatial dimension, the
condition is

∆t <
∆

c
√

3
.

In general

∆t <
1

c
√

1
∆x2

+ 1
∆y2

+ 1
∆z2

.

The user can specify the time step to be used using the CONSTANT TIME STEP keyword. If
no CONSTANT TIME STEP keyword is present, the code will compute an appropriate Courant
time step using the first equation above with a safety factor of 0.9 assuming non-spatially
varying cells which is typical for hybrid simulations.

9.1 Keywords

The physics keyword HYBRID TD ELECTROMAGNETICS specifies that hybrid time-domain elec-
tromagnetics (HTDEM) physics is to be used to couple structured and unstructured meshes.
This goes in place of the UNSTRUCTURED TD ELECTROMAGNETICS physics keyword (see Section
2).

HEX MASS LUMP, bool | string
Specifies whether mass lumped integration is activated for hex elements.

Mass-lumped integration is required for successful hybrid simulations. The possible
options are true (or yes) and false (or no). The default is presently false.

WRAPPER, SIDESET int
Specifies the sideset identifying the boundary of the unstructured mesh.

The WRAPPER keyword is only processed if the edgesets identifying the fields to ex-
change between the structured and unstructured meshes are not detected in the mesh
description. For I-DEAS generated meshes the preprocessor can automatically gen-
erate these edgesets and the elements required to interface the unstructured mesh to
the structured mesh for models without material variations in the interface region.
However, in cases where material variations are present in this interface region, the
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user needs to manually generate the interface elements and use the wrapper keyword
to identify the boundary of the unstructured mesh. The specified sideset and the first
element block found containing hexahedral elements are used to generate the edgesets
needed to connect the meshes.

FIELD SOLVER, PML, PROFILE=X, FUNCTION= int, Y, FUNCTION= int, Z, FUNCTION= int,
BLOCK=1,2,3,4,5,6
Specifies the use of the STDEM PML solver.

The FIELD SOLVER keyword requires HTDEM physics. The required sub-keyword
PML, PROFILE provides the functional description of the PML in each of the three
coordinate dimensions. Often these are the same function so a single function number
can be referenced three times. The required sub-keyword BLOCKS specifies the user
block numbers of the PML blocks. These are always 1-6 as shown if using the provided
structured mesh/PML generation template discussed in section 9.2.

FAR FIELD, SEGMENT = real real real real real real [, PHASECENTER = real real
real, LOOKANGLES real real real real ...]
Specifies that far-field signals are to be computed.

The FAR FIELD keyword requires HTDEM physics. The required sub-keyword SEGMENT
provides the coordinates of two points on the structured grid describing the virtual
surface which surrounds the scatterer which resides in the unstructured mesh. This
SEGMENT should reside just outside the hybrid interface region and inside the PML
absorbing boundary condition which will typically terminate the structured grid for
scattering simulations. The optional PHASECENTER keyword provides the 3D Cartesian
coordinates (x, y, z) of the desired phase reference for the far fields. If not provided, the
Cartesian coordinate origin is used as the phase reference. The other optional keyword
LOOKANGLES provides (θ, φ), pairs of look angles (in degrees) where the transient far-
field waveforms Etheta and Ephi are desired.

If desired, the frequency content of the excitation waveform can be deconvolved from
the transient field waveforms as a post-processing step. A PFIDL script is available
for accomplishing this deconvolution.

The transient fields are written to the ascii file problem_name.EtEp.asc. They are also
available in the problem_name.exo file but only the time cycles corresponding to the
EMIT PLOT keyword will be available there. The excitation waveform can be obtained
from the problem_name.his file. All time cycles will be available if “EMIT HISPLT,
CYCLE INTERVAL = 1” is used.

FAR FIELD PATTERN, PHISTART = real, [PHIEND = real, NUMPHI = int,] THETASTART
= real, [THETAEND = real, NUMTHETA = int,] FREQUENCIES real real real ...

Specifies that far-field patterns are to be computed.

The FAR FIELD PATTERN requires the FAR FIELD keyword specify at a minimum the
location of the virtual-surface SEGMENT. The start and end keywords of each angle
specify the starting and ending angles (in degrees) of each for the particular pattern.
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If only a single phi cut is desired, only PHISTART need be specified and similarly only
THETASTART for a single theta cut. At least one frequency must be provided at which
to compute the patterns.

Unlike the transient far-field results, the frequency content of the excitation waveform
time history has been removed from the resulting patterns. An inherent assumption
is that a single source is used. Possible sources include those described by the SOURCE
keyword, the PORT SOURCE keyword, and the PLANE WAVE SOURCE keyword.

The patterns are written to the ascii file problem_name.Pat.asc. A script is available
to read these patterns using PFIDL.

Since the patterns involve Fourier transforms of transient results, the user must verify
that the simulation is run long enough that all relevant far-field transients have damped
to zero. This is to avoid problems with aliasing which would render the pattern results
invalid. Restart can be used to extend the simulation in the case that steady state has
not yet been reached.

9.2 Mesh Generation

Creation of a suitable unstructured mesh boundary to couple to the structured mesh requires
a few specialized steps.

Two specialized templates (see Appendix F) are required to generate the unstructured
mesh using Cubit and the structured mesh using the legacy preprocessor for Quicksilver,
Mercury. The first is a Cubit journal file creating for this example a simple spherical scat-
terer and containing the appropriate commands to create the wrapper for connecting to the
structured mesh. The second is a Mercury input file to generate a structured mesh to couple
with the unstructured mesh.

Significant changes may be required in the journal template depending on the user’s
desired scattering model. This example generates the mesh shown in Fig. 4.

The dark blue surface represents the (very coarse in this case) scattering sphere and the
magenta surface the total/scattered field boundary. This boundary is where a plane-wave
source would launch from. The volume between the blue and magenta surface is filled with
tetrahedrons making up the total-field region. The volume between the magenta and the
green surface contains tetrahedrons in the scattered-field region. The orange is the transition
between tetrahedrons and hexahedrons which includes some pyramids to mate with the outer
hexahedrons in light blue.

In addition to a plane-wave source, the total-field region may contain other source types
such as the volume current source (J Source). A useful exercise is to modify the mesh such
that the scatterer is removed and replaced with it’s internal mesh. A plane-wave source can
now be launched and observed to propagate across the total-field region. The fields in the
scattered-field region will be zero for all time since there is no scatterer.
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Figure 4. Example hybrid mesh.

The FDTD mesh generated by the Mercury template overlaps with the blue hexahedrons
in Fig. 4 to form the hybrid communication. A few changes are required in this template
including 1) the mesh deltas in each direction (template lines 10-12), 2) the overall mesh
dimensions (template lines 14-16), and the depth of the PML boundary (line 27). The
minimum overall mesh dimensions should extend two FDTD cells outside the journal file
mesh in each dimension, ie, journalSize+4 each dimension. The PML boundaries are added
outside of this dimension. If more space is desired between the hybrid interface and the start
of the PML, the overall mesh dimensions can be made larger than the minimum values.

Presently the Mercury preprocessor is available on the PPIC LAN and tlcc2 cluster
(chama, uno, etc.) linux machines. On the PPIC LAN, define:

export QSROOT=/remote/tdpoint/qsroot
export QS_SYS_TYPE=linux_x86_64_intel

80



On the tlcc2 cluster machines, define:

export QSROOT=/projects/emphasis/qsroot
export QS_SYS_TYPE=tlcc2

Then on any machine, define:

export MERKmaster=$QSROOT/qs/master.merk
alias merk="$QSROOT/bin/$QS_SYS_TYPE/merk_ng.exe -e20 -q -E"

At this point the file is processed as follows, where the number of parallel processors desired
must be specified. Whatever that number is, the file will also function in serial.

merk -Dnproc=int hybrid.mrk outfile [> merk.out]

In this example "hybrid.mrk" is the name chosen for the Mercury input file. This com-
mand directs Mercury to write two files for EMPHASIS, "outfile.pff" and "outfile.inp". The
pff file contains the structured mesh and is ready to go for serial and the specified number
of parallel processors. The inp file is a skeletal version which contains primarily the PML
description which the user must transfer into his own EMPHASIS input file, or use this
one as a starting point. Mercury outputs information about the Courant limit and block
decomposition across processors to stdout. Redirecting this to a file provides a useful archive
for the block decomposition.

The outfile.inp file created by the example hybrid.mrk file is also shown in Appendix F.
The PML functions of interest are FUNCTIONS 3, 4, and 5. In most cases the functions are
identical since normally the PML thickness is the same in all three dimensions. Therefore,
only one function need be copied and placed into the EMPHASIS input for the scattering
problem. This function is then referenced in the FIELD SOLVER keyword.

A full working EMPHASIS input file using the PML description from the outfile.inp file
is shown at the end of Appendix F.

If errors exist in the hybrid connection, EMPHASIS will generate errors such as

*** ERROR: STDEM_Point_History::Initialize
Unable to locate point

P0: *** ERROR: Interface_Direction(): Illegal PML block configuration
detected PML GID= 9 non-PML GID=4

In this case the user should verify that the mesh deltas and dimensions are correct in the
Mercury template.
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10 Inlet-port Poisson Solutions

The simulation of inlet ports where the port field distribution is derived from the static field
distribution over the port is accomplished using the following process:

1. Create the full 3D mesh for the simulation, including an inlet port. The inlet must be
planar, but can reside at an arbitrary spatial location. If meshing with I-DEAS, export
this mesh to a genesis database using PREP [5]. PREP will initialize number-of-nodes-
per-side distribution factors per side to zero. Other mesh generators producing generic
must do the same. A suggested name for this mesh file is problem_name.gen.

2. Generate a 2D mesh description of the inlet for the Poisson solver by invoking UTDEM
SIDESET EXTRACTOR physics in Emphasis (3D). The input file for this step contains the
sideset id of the inlet port to be extracted as well as the ids of any sidesets intersecting
the extracted sideset. These intersecting sidesets are those required to set boundary
conditions for the 2D Poisson solve. The sideset extractor will extract the inlet sideset,
convert it to a 2D mesh description, and write a 2D gen file for Emphasis. The extractor
will also record in this gen file the appropriate transformation matrix to be applied to
the Poisson results to properly position the Poisson solution into the 3D gen file. An
example input file is shown in Appendix C. The extractor will create the 2D mesh file
using the name problem_name.2D.gen.

3. Solve the Poisson problem by invoking CABANA POISSON physics with the POISSON
SOLUTION keyword in Emphasis (2D). After the solution is obtained, Emphasis will
write the solution and the transformation matrix into the 3D gen file for UTDEM.
For this step, a new copy of the full 3D gen file created in step 1 must be available in
the directory so that the Poisson results can be written into it. If the 3D gen file has
already been modified in this manner, the Poisson solution will note this and ask the
user to provide a new copy. Since this is a generated file, a suggested name for this
copy is problem_name.inlet.gen.

An example input file is shown in Appendix D. Here, the POISSON SOLUTION keyword
specifies that Cabana obtain a single Poisson solution on the mesh with the given
boundary conditions and exit. In addition, a constant CHARGE DENSITY can be supplied
for the mesh volume. An ascii file will also be written containing the results with
filename results_file. Dirichlet boundary conditions are supplied with the CONDUCTOR
keyword. The EXPORT RESULTS keyword controls the writing of results to the UTDEM
3D genesis file and SIDESET specified. Further information can be found in [13].

4. Invoke UTDEM physics in Emphasis (3D) to complete the full 3D solution, specifying
FIELD DIST in the port source keyword descriptor.
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11 Running UTDEM PIC With ITS Source Data

UTDEM PIC can be used to simulate EMP (electromagnetic pulse) effects resulting from
X-ray or gamma ray sources. The ITS (Integrated Tiger Series) codes [6] are used to simulate
coupled electron/photon transport in complex geometries with multiple materials. However,
for electron transport in vacuum or gas, ITS cannot self-consistently model the non-linear
electromagnetic response when the space-charge and current of the electrons has a significant
effect on the EM fields. On the other hand, UTDEM PIC is specifically designed to self-
consistently handle electron motion and EM fields.

For many EMP problems, a reasonable approximation is a "weak coupling" approach
in which ITS does the radiation transport and computes electron source data for use in
an Emphasis simulation for the self-consistent EM response. This weak coupling is usually
applicable when the ITS simulation does not have high-current electron flow in the vacuum
and/or gas-filled regions where the EMP response is needed. ITS and Emphasis currently
support three types of coupling:

1. Electron emission from surfaces: emitting Emphasis sidesets are matched to corre-
sponding ITS emission subsurfaces.

2. Electron emission from volumes: emitting Emphasis element blocks are matched to
corresponding ITS emission subzones.

3. ITS energy deposition in subzones is used as a direct source for updating the electrical
conductivity in elements using the HP Gas Electrical model.

The data files built by ITS for Emphasis use the binary "portable file format" (PFF). PFF
was developed in the late 1980’s to provide a compact format for transferring data between
very different platforms (Cray and VAX) at a time when disk space was very limited. It
has been continuously improved over time, and supports a wide array of applications. PFF
is now open-source software, part of the "Hermes Utilities" package [10]. A PFF file is
a collection of randomly accessible datasets. A dataset is an aggregation of all the data
needed to define a high-level object, e.g. scalar or field data on a grid, or a list of particle
ordinates and attributes (momenta, charge, etc.) The two dataset types used here are NGD
(m-dimensional vectors on an n-dimensional non-uniform grid), and IFL (a generic dataset
with one integer and one float array). All real data in PFF is single-precision, but PFF
provides utilities to encode a double into a short int array, and decode the int array back.

11.1 ITS Electron Emission Tallies

An ITS electron emission tally is a discrete ("histogram") distribution on a 3-D energy-
angle grid: energy E in MeV, polar angle θ, and azimuthal angle φ. The two angles are
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application-specific, and will be described later. The tally is a set of counts on a 3-D array
of sampling bins with:

NE energy bins: {Ei ≤ E < Ei+1; 1 ≤ i ≤ NE}, of size ∆Ei = Ei+1 − Ei,

Nθ θ bins: {θj ≤ θ < θj+1; 1 ≤ j ≤ Nθ}, of size ∆µj = cosθj − cosθj+1, and

Nφ φ bins: {φk ≤ φ < φk+1; 1 ≤ k ≤ Nφ}, of size ∆φk = φk+1 − φk.

The tally data is the density of counts in each bin:

Tijk =
Cijk

∆Ei∆θj∆φk
.

ITS simulations track a large number of source particles, and normalizes each count to a
single source particle. The sum of the counts over all bins is an important quantity for
normalizing Emphasis emission amplitudes, and is denoted C0.

Historically, a single emission tally has been written to a single NGD dataset. To store all
the bin-boundary values, the size of the 3-D NGD dataset is (NE + 1)× (Nθ + 1)× (Nφ + 1).
The upper planes and edges of the data array in each direction are filled with 2-D and 1-D
distributions respectively (integrating over one or two directions), while C0 is put in the
uppermost corner, (NE + 1, Nθ + 1, Nφ + 1). An ITS simulation uses the same energy-angle
grid for all emission tallies of the same type (surface or volume). Furthermore, Emphasis
only needs the NENθNφ 3D tally data, and the reduced distributions are easy to compute if
needed. For a small number of tallies, the wasted file space is not much of a concern. However,
time-dependent ITS simulations with many emission subsurfaces and/or subzones can now
generate huge number of tallies, >105. Not only is file space wasted, but it cumbersome to
have so many datasets in a PFF file.

To handle large numbers of tallies efficiently, a new "multi-tally" format has been devel-
oped, using the float array of two IFL datasets. For a set of NT tallies, the energy-angle grid
data is written only once to one dataset, and the tally data is written to the float array of a
second IFL dataset. The first NT data values are C0 for each tally, followed by NTNENθNφ

values for the 3D data. These datasets are currently implemented only for volume emission.

11.2 Surface Emission

ITS combinatorial geometry builds a domain using "bodies" of primitive shapes: box, sphere,
cylinder, etc. For surface emission, ITS also defines a numbering scheme for the surfaces on
each body type. For example, there are three surfaces on a cylinder: #1 and #2 are the disk
endfaces, and #3 is the r = const surface between the two disks. A local 2-D coordinate
system (U, V ) is defined for each surface on each body type. Each surface can then be divided
up into NU × NV subsurfaces. An ITS simulation can request surface emission tallies from
one or more surfaces from one or more bodies, each with its own (NU , NV ) subsurfacing
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parameters. An emission tally is generated for each subsurface. For a time-dependent
simulation, there is a tally for each subsurface and time bin.

In a surface emission tally, The angles θ and φ are computed from the momentum com-
ponents of each electron in a local right-handed Cartesian coordinate system, (n̂, φ̂0, φ̂90),
where n̂ is the normal to the surface, φ̂0 defines the φ = 0 axis, and φ̂90 = n̂× φ̂0 defines the
φ = 90o axis. ITS systematically defines φ̂0 for each surface type. For curved surfaces, the
local basis varies with position, but the global variation over a single subsurface decreases
with increasing number of subdivisions. The range of θ is 0o (normal to the surface) to 90o

(tangential).

In UTDEM PIC, a BEAM EMISSION sideset is mapped to the tallies of one or more
ITS subsurfaces. Three problems must be addressed:

1. Spatially locating which subsurface(s) to use.

2. Building momentum components in a local basis matching the ITS basis (n̂, φ̂0, φ̂90).

3. Correctly normalizing the beam current emission amplitude.

Item #3 will be discussed in section 11.4. Surface emission has undergone several it-
erations since its inception in c. 2006, embedding more geometry information in the PFF
file to automate the simulation setup. UTDEM supports the following versions of a surface
emission PFF file:

1. The "original-version 0" files require a 1-1 mapping between a sideset and a single
ITS subsurface tally in a PFF dataset, and have no embedded geometry information.
The file is just a collection of NGD datasets with tally data. The user is responsible
for explicitly providing a dataset number in the BEAM EMISSION command using the
keyword/value pair "ITS ds_num". Furthermore, for most curved surfaces, φ̂0 needs to
be explicitly defined with the PHI0 keyword. Newer versions of ITS no longer generate
these files, but they are still supported.

2. "Version 0" files still require a 1-1 mapping between a sideset and a single ITS sub-
surface, but include some embedded geometry information. As above, the file is just a
collection of NGD tally datasets. However, each dataset also includes (1) the smallest
bounding box in the global ITS coordinate system that enclosed the subsurface, and
(2) the φ̂0 vector, if needed. With these files, the PHI0 keyword is no longer required,
and (in most cases) the dataset number for the ITS keyword. The required dataset is
the one with the smallest bounding box enclosing the sideset. For complicated geom-
etry, this auto-fitting algorithm can still fail; in this case, the user must still explicitly
provide the dataset number.

3. "Version 1" files adds structure and more detailed geometry information by organizing
the file into sets of tallies for each ITS emission surface, in the order requested in
the ITS input file’s ELECTRON-EMISSION command. For each surface, there is a new
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"surface header" IFL dataset, describing the body geometry, the surface on the body,
and subsurfacing parameters. This is followed by the NU ×NV NGD datasets for the
tallies on each subsurface. Emphasis loads the data in the file, building ITS_Body
and ITS_Surface objects. A sideset is no longer restricted to having a 1-1 mapping
with a subsurface. Instead, Emphasis can fit each face to the appropriate subsurface.
Furthermore the sideset can overlap multiple ITS surfaces.

Using version-1 files removes the restriction that the Emphasis mesh be conformal to ITS
subsurface boundaries—a major improvement. However, there are limitations on accuracy
that should be noted. First, consider the face fitting algorithm. A face is on a surface if
all three nodes are on it (to with a given tolerance). The subsurface assigned to the face
is determined by the face centroid. With a non-conforming mesh, a face can overlap other
subsurfaces. Second, the actual emitting area of an ITS subsurface may be smaller than
its geometric area because it is obscured by another ITS body. For this reason, Emphasis
computes the total emission area of the ITS subsurface, ASS, as the sum of the area of the
fitted faces. It then assigns a fraction of the total ITS emission count to each face, Cface =
C0Aface/ASS. For a fully emitting surface with many subzones and a coarse Emphasis mesh,
there may be large fluctuations in each ASS, and thus the local face emission density. Thus,
there is still some incentive to coerce the Emphasis mesh to conform to subsurface boundaries,
but it does not require creating sidesets exactly matching subsurfaces. Finally, note that
a sideset must completely cover the emitting area of a subsurface, otherwise the emission
density will be artificially enhanced.

11.3 Volume Emission and Energy Deposition

In ITS combinatorial geometry, boolean operations on the bodies previously discussed for
surface emission are used to create "zones". Zones can be subdivided into "subzones",
analagous to the (U,V) subsurfacing of emission surfaces. ITS has conventions for automati-
cally subzoning a wide variety of single and two body zones with three subzoning parameters.

ITS has the option to save volumetric electron emission tallies in subzones. These are
tallies of electrons created in space, either with a photon or primary electron source. All
such tallies use the global ITS Cartesian coordinate system for defining the angles θ and φ.
Here θ is in the range [0, 180] degrees, with θ = 0o along the +z axis and θ = 180o along the
-z axis.

A "version-1" volumetric emission PFF file is structured in the same way as version-1
surface files. For each emitting zone, there is a "zone header" IFL dataset describing the zone
geometry and the three subzoning parameters, followed by NSZ NGD datasets with emission
tallies for each subzone, in ITS order. A "version-2" volumetric emission file is structured
similarly, but with the NSZ NGD tally datasets replaced by one or more multi-tally IFL
datasets with the tally data (ITS has the option to split output for very large numbers of
tallies into several IFL datasets to limit the dataset size). A single copy of the common
energy-angle grid is written to the float array of the zone header dataset.
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In Emphasis, elements in a specified block are auto-fitted to a subzone by requiring that
the centroid be within the subzone to a specified tolerance. There are considerations for
accuracy similar to surface emission. The volume of each subzone, VSZ , is the sum of the
volume of all the elements fitted to it. The ITS emission count assigned to each element is
Cel = C0Vel/VSZ . To reduce fluctuations in the local emission density, it is worth the effort
to build an Emphasis mesh that conforms to subzone boundaries as much as possible.

With volume emission, it is easy to generate very large numbers of emission tallies, and
other approximations are needed to make some simulations feasible. An important case is
doing large-scale EMP simulations in air with pressure in the range ∼ 1−10 < P < 760Torr.
Here, the HP Gas Electrical model is applicable for the air breakdown plasma. However, it
is only necessary to create kinetic electrons if their collisional range is larger than an element
size. If not, the electron will lose all its energy in the element it was created in. We therefore
approximate the system with two sources from ITS. Volume emission is used for creating
kinetic electrons above some cutoff energy Ecut, and energy deposition ITS electrons created
below Ecut is deposited locally in each element. This deposited energy is used as an extra
source term for creating electron-ion pairs in the air breakdown plasma.

ITS energy deposition is stored in the PFF file using IFL datasets, one per zone. The
integer array contains the same data to define the zone geometry and subzoning parameters
as the zone header for volume emission. The float array contains the NSZ values (in MeV).
Emphasis automatically loads both types of data, and creates ITS_Zone objects that have
either energy deposition or volume emission, or both.

11.4 Setting Up Time-Dependent Emission

Traditionally, ITS simulations have been time-independent. To drive a UTDEM PIC simu-
lation of an experiment with ITS data from a a time-independent simulation, the following
additional data is required:

1. A source pulse waveform, f(t), typically from one or more PCD signals.

2. The total number of source particles, Nsrc, to absolutely normalize the emission am-
plitude.

The BEAM EMISSION command uses the function f(t) for the TEMPORAL option and the scale
factor for the AMPLITUDE keyword is

I0 =
eNsrc

F0

f(t),

where,

F0 =

∫ ∞
0

f(t)dt.
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Note that I0 has units of current. This approach assumes that the transit time between
all emission surfaces is short compared to the time scale of the driving pulse. For SGEMP
simulations of small cavities, this is a very reasonable assumption.

In fact, ITS can do time-dependent simulations. This capability was initially added to
diagnose the output of standard ITS sources with time-dependent spectra. ITS can now also
be driven with time-dependent sources built from Quicksilver PIC simulations. Emphasis
can read time-dependent ITS PFF files and use them as a source with no need for an external
f(t) function.

For a time-dependent ITS simulation, a set of "time bin" boundaries defines tally output,
{tn; 1 ≤ n ≤ Nt + 1}, which can be non-uniformly spaced if requested. The first dataset of
all output PFF files is an IFL dataset with the time bin boundaries. When Emphasis first
opens a source ITS PFF file, it checks to see if the first dataset is a time bin IFL dataset. If
it is, it handles the time-dependence automatically, with no additional user input required.
However, one important difference with time-independent simulations must be addressed.
To correctly handle non-uniform time bin spacing, all ITS tally data is divided by the time
bin width, i.e. counts are now count rates. The AMPLITUDE scale factor for these simulations
is thus Q0 = eNsrc, in units of charge.
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A Use of the PREP Mesh Preprocessor

The mesh preprocessor PREP is a holdover from legacy code that has been refactored to pro-
vide conversion from I-DEAS Universal format to ExodusII format for EMPHASIS/Nevada
UTDEM. It is also used to provide encoded sidesets for subsequent conversion to edgesets
by Nevada. Use of PREP is not required if 1) the chosen mesh-generation software cre-
ates ExodusII format directly including all required nodesets, sideset-coded edgesets, and
sidesets, or 2) the simulation requires no edgesets (or only virtual edgesets) but otherwise the
mesh-generation software can provide the required ExodusII description including nodesets
and sidesets.

Reference [5] provides general guidance on the use of PREP but a few additional com-
ments are warranted. A typical PREP input file for a pure unstructured UTDEM simulation
is shown below.

\$INPUT
flagwrap = ’N’
flagblocks = ’N’
flagchaco = ’Y’
flagalegra = ’Y’
nodeblu = ’HLinInt1’
nodegryblu = ’ELinInt1 HLinInt1’
nodeltblu = ’ELinInt2 HLinInt1’
nodemag = ’ELinInt1’
nodepnk = ’ELinInt2’
nodecyn = ’Load1’
nodegrn = ’Load2’
nodeorg = ’Source1’
nodeltmag = ’Obs’
\$END

The “flagwrap”, “flagblocks”, “flagchaco”, and “flagalegra” keywords must be set as shown
for pure unstructured. If this were a hybrid FDTD/FETD simulation, “flagwrap” and “flag-
blocks” would be set to ‘Y’.

The “node*” node color attribute keywords are required to assist PREP in making con-
nections between our I-DEAS meshing convention of using node color to represent attributes
requiring nodesets or edgesets, including non-port sources, observers including slot and wire
observers, loads, slots, and wires. Attributes requiring mesh-related edgesets, such as ElinInt
(E Line Integral) and wire, also require beam elements along the path to further assist PREP
in correctly defining the edgeset. Attributes utilizing sidesets and virtual edgesets do not
appear in the PREP input file. Sidesets are generated within I-DEAS by utilizing “pressure”
or “force” boundary conditions.
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Node color keywords containing more than one attribute, such as “nodegryblu” above,
indicate that those paths intersect in the mesh. In this case, an E Line Integral path intersects
an H Line Integral path. Therefore, both attributes must be assigned to that node color so
PREP can correctly include that node in both paths.

B Complete UTDEM input file

$-----------------------------------BEGIN_QA---------------------------
$ ID: ucavabc_slots
$ Title: Cavity w/slots surrounded by ABC
$ Category: Regression
$ Physics: electromagnetics
$ Dimension: 3D
$ Owner: C. David Turner
$
$ Description:
$
$ Conducting cavity with internal source and slots in walls.
$ Energy leaks out through slots to observer outside cavity.
$ ABC surrounds entire object.
$
$------------------------------------END_QA----------------------------

TITLE
Unstructured 3D cavity with edge source and observer

$
$ The following line will have nevada print out the sequence of calls
$ it makes during execution.
$
$DEBUG MODE, LOCATION

$ The following line dumps out node/edge/face/element connectivity info.
$DUMP FACES

UNSTRUCTURED TD ELECTROMAGNETICS

formulation, second order
aztec set, 0

abc bc, sideset 4
pec bc, sideset 2
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observer, nodeset 28
observer, nodeset 29

source, nodeset 31, function 1

slot observer, nodeset 19
slot, edgeset 123, aztec_set 1, width 0.00001, depth 0.0, int_mat 1, ext_mat 2

slot observer, nodeset 20
slot, edgeset 124, aztec_set 2, width 0.00005, depth 0.0, int_mat 1, ext_mat 2

CONSTANT TIME STEP 1.01197539e-09

GRADUAL STARTUP FACTOR 1.0

BLOCK 1
MATERIAL 1

END

BLOCK 22
MATERIAL 2

END

END

FUNCTION 1 GAUSSIAN, SCALE=1.0 WIDTH=2.0e-9 SHIFT=10.0e-9

EXODUS EDGE SETS (123 124 153)

$$$$$$$$$$$$$$$$$$$$ execution control $$$$$$$$$$$$$$$$$$$$

TERMINATION TIME 9.0e-9

$$$$$$$$$$$$$$$$$$$$ solver control $$$$$$$$$$$$$$$$$$$$

aztec
solver, cg
precond, jacobi
output, none
tol = 1.e-12
polynomial order, 1

end

aztec 1
solver, cg
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precond, jacobi
output, none
tol = 1.e-12
polynomial order, 1

end

units, si

$$$$$$$$$$$$$$$$$$$$ output control $$$$$$$$$$$$$$$$$$$$

EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2

PLOT VARIABLE
ELECTRIC_FIELD

END

$$$$$$$$$$$$$$$$$$$$ material models $$$$$$$$$$$$$$$$$$$$

MATERIAL 1
model 1

END

MATERIAL 2
model 2

END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

MODEL 2 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

EXIT
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C Sideset Extractor input file

$-----------------------------------BEGIN_QA---------------------------
$
$ Sideset extract example
$
$------------------------------------END_QA----------------------------

$debug mode, LOCATION

title
SIDESET extract: extract a side set and turn it into a 2D mesh file

$$$$$$$$$$$$$$$$$$$$ physics options $$$$$$$$$$$$$$$$$$$$

UTDEM Sideset Extractor
extract, sideset 10
intersect, sideset 9, sideset 14, sideset 15, sideset 16, end

block 1
material 1

end

end

$$$$$$$$$$$$$$$$$$$$ execution control $$$$$$$$$$$$$$$$$$$$

termination cycle = 1

emit plot, cycle interval = 1

$$$$$$$$$$$$$$$$$$$$ material models $$$$$$$$$$$$$$$$$$$$

material 1
end

exit

D Poisson Solution input file

$-----------------------------------BEGIN_QA---------------------------
$
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$ Poisson solution example
$
$------------------------------------END_QA----------------------------

$debug mode, LOCATION
$debug mode, CABANA

title
CABANA: Poisson solution

$$$$$$$$$$$$$$$$$$$$ physics options $$$$$$$$$$$$$$$$$$$$

CABANA POISSON

Poisson solution, charge density 0., results file "inlet.out"

conductor, sideset 9, potential 0.
conductor, sideset 14, potential 0.
conductor, sideset 15, potential 1.
conductor, sideset 16, potential 1.

export results, genesis file "z_vert.inlet.gen", sideset 10

block 10
material 1

end

end

double precision exodus

aztec
solver, cg
precond, none
scaling, sym_diag
output, none
tol = 1.e-6
polynomial order, 1

end

units, si

$$$$$$$$$$$$$$$$$$$$ execution control $$$$$$$$$$$$$$$$$$$$

$ Nevada requires termination time to be specified:
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termination time = 1.e-8

$$$$$$$$$$$$$$$$$$$$ material models $$$$$$$$$$$$$$$$$$$$

emit screen, cycle interval = 1
emit plot, cycle interval = 1

plot variable
potential
electric_field
charge_density

end

$$$$$$$$$$$$$$$$$$$$ material models $$$$$$$$$$$$$$$$$$$$

Material 1
Model 1

end

Model 1 Simple Electrical
eps 1.
mu 1.
sigma 0.

end

crt: off

exit

E Runtime Compiler Functionality

The runtime compiler allows inclusion of double quoted (“ ”) ‘C’ language style functions
within unformatted input files. The functions are evaluated during program setup or execu-
tion to calculate independent solution variables.

This provides the user with an endlessly flexible method for describing boundary condi-
tions, initial conditions, source terms, material properties, or any other independent variable.

The specific variable names expected within runtime compiled functions depends on the
host code and the context of the function use. In general it should be remembered that the
runtime functions return quantities by modifying variables that are passed in by reference.
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E.1 The RTC language

The RTC language can be thought of as a small subset of the C language with a few minor
modifications.

E.1.1 Operators

The RTC language has the following operators that work exactly as they do in C and have
the same precedence as they do in C:

• + Addition

• − Subtraction

• − Negation

• ∗ Multiplication

• / Division

• == Equality

• > Greater than

• < Less than

• >= Greater than or equal to

• <= Less than or equal to

• = Assignment

• || Logical or

• && Logical and

• ! = Inequality

• % Modulo

• ! Logical not

The following operators do not occur in the C language, but were added to the RTC language
for convenience:

• ˆ Exponentiation
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E.1.2 Control flow

The RTC language has the following control flow statements:

• for( expr ; expr ; expr ) { ... }

• while( expr ) { ... }

• if (expr) {...}

• else if (expr) {...}

• else {...}

These control flow statements work exactly as they do in C except that the code blocks
following a control flow statement MUST be enclosed within braces even if the block only
consists of one line.

E.1.3 Line Structure

The line structure in the RTC language is the same as that of C. Expressions end with a
semicolon unless they are inside a control flow statement.

E.1.4 Variable Types and Default Variables

Declaring scalar variables in RTC is done exactly as it is done in C except that only the
following types are supported:

• int

• float

• double

• char

For scalars, variables can be declared and assigned all at once. Both of the following ap-
proaches will work:

int myVar = 9;

OR

99



int myVar;
myVar = 9;

Arrays work a little differently in RTC than they do in C. There are no new or malloc
operators, instead the user may declare dynamically sized arrays in the same manner as
statically sized arrays. Also, in C all the values of an array may be initialized at once by
putting the values within braces. This is not supported in the RTC language. Users will
have to loop through the array and assign the values one by one. For example:

LEGAL:

int ia[x*y]; //Note: in C this would not be legal for non-const x,y
int ia2[3];

NOT LEGAL:

int ia[3] = {1, 2, 3};

Indexing arrays can be done using the index operator: array[expr] = ...;

Bounds checking is done at run time. If the bounds of an array are exceeded, it will dump
an error to stdout.

For all user-defined initial conditions the following default variables are available:

• coord - An array of coordinates. Use an index of zero to get the x coordinate, an
index of one to get the y coordinate, and an index of two to get the z coordinate (z is
available in 3D only).

• field - This is the means by which the function returns its results. The variable (ex:
density, velocity) specified above the function is set according to the values of the field
array. If a scalar variable is being set, then the value should be assigned to field[0].

E.1.5 Math

The following math.h functions are available in RTC:

• asin(arg) : returns the arc sine of arg

• acos(arg) : returns the arc cosine of arg

• atan(arg) : returns the arc tangent of arg
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• atan2(y, x): returns the arc tangent of y/x

• sin(arg) : returns the sine of arg

• cos(arg) : returns the cosine of arg

• tan(arg) : returns the tangent of arg

• sqrt(arg) : returns the square root of arg

• exp(arg) : returns the natural logarithm base e raised to the arg power

• sinh(arg) : returns the hyperbolic sine of arg

• cosh(arg) : returns the hyperbolic cosine of arg

• tanh(arg) : returns the hyperbolic tangent of arg

• log(arg) : returns the natural logarithm for arg

• log10(arg) : returns the base 10 logarithm for arg

• rand() : returns a system-generated random integer between 0 and RAND_MAX

• drand() : returns a system-generated random double between 0.0 and 1.0

• fabs(arg) : returns the absolute value of arg

• pow(b, e) : returns b to the e power (Note: the Exponentiation operator is available)

• j0(arg) : Bessel function of order zero

• j1(arg) : Bessel function of order one

• i0(arg) : Modified Bessel function of order zero

• i1(arg) : Modified Bessel function of order one

• erf(arg) : Error function

• erfc(arg) : Complementary error function (1.0 - erf(x))

• gamma(arg) : returns Γ(arg)

E.1.6 Strings

The user may pass quoted strings as arguments to functions. Note: it may be necessary to
escape-out the double quotes so that they do not confuse the input-file parser. See printf
section below for an example.
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E.1.7 Printf

The RTC printf method is called just like its C counterpart. The first argument is a quoted
character string. This string will contain the % symbol which will tell RTC to output the
corresponding argument. The only difference between RTC’s printf and C’s printf is that
in RTC’s version, a type character after the % is unnecessary. For example, inside an RTC
method the following is appropriate:

printf(\"One:% Two:% Three:% \", 5-4, 2.0e0, ’c’);

Which would generate this output: One:1 Two:2 Three:c

E.1.8 Comments

The traditional C-comment mechanism may be used inside RTC functions. Use /* to begin
a comment and */ to end the comment.

E.1.9 Unsupported Features

Implementing the entire C-language was well beyond the intent of RTC. Features that were
too difficult or did not add enough value have been left out. The following is a list of common
C features that are unsupported in RTC:

• There are no ++ or −− operators. Use i = i+ 1 instead of + + i

• Structs

• Pointers

• Instant array initialization: int array[5] = 1,2,3,4,5;

• Case statements

• Casting

• Labels and gotos

• Function definition/declaration

• stdio

• Keywords: break, continue, const, enum, register, return, sizeof, typedef, union, volatile,
static.
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E.1.10 Examples

The following series of examples illustrate the use of the RTC language within the context
of some simple USER DEFINED INITIAL CONDITIONS.

Example 1

USER DEFINED INITIAL CONDITION, DENSITY
"field[0] = 5000.0 + (1.0 / (coord[0] + atan2(2,3)));"

END

In this example the density of every element is set equal to 5000 plus one over the x coordinate
of the element plus the arc tangent of 2 and 3.

Example 2

USER DEFINED INITIAL CONDITION, DENSITY, BLOCK 5
"
double sum = coord[0] + coord[1] + coord[2];
field[0] = sum / 0.0001;

"
END

In this example, the initial density of elements in block 5 is set to to the sum of the x, y,
and z coordinates divided by 0.0001;

Example 3

USER DEFINED INITIAL CONDITION, DENSITY, BLOCK 5
"
double newarray[10];
field[0] = 0;
for (int i = 0; i < 10; i = i + 1) {
newarray[i] = -sin(-i*2) + 2;

}
for (int i = 0; i < 10; i = i + 1) {
field[0] = field[0] + newarray[i % 10];

}
"
END
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This example shows how to use for-loops and arrays in the RTC language. The density of
the elements in block 5 is being set to

∑9
i=0(− sin(−2i) + 2)

Example 4

USER DEFINED INITIAL CONDITION, VELOCITY, BLOCK 5 10
"

if ( fabs(coord[0]) < 1.10 ) {
field[0] = 0.;
field[1] = 0.;
field[2] = 0.;

}
else {
field[0] = 100.;
field[1] = 200.;
field[2] = 300.;

}
"
END

This example uses the absolute value of the x-coordinate of the element. If this value is
less that 1.10, the velocity is set to zero in each direction, otherwise the velocity is set to
100,200,300.

Since velocty is not a scalar value, assignments must be made to several indices of the field
array.

E.2 Using RTC and APREPRO

Frequently alegra users will place aprepro constructs into their input decks and then
preprocess the input deck with aprepro by issuing the command:

Alegra -a runid.inp

A problem may exist with curly braces, { and }, in the runtime compiler coding as in
the above examples. When the input deck is sent through aprepro, the preprocessor will
evaluate expressions in curly braces, and the braces will not appear in the processed input
deck read by alegra. This will cause an error when the runtime compiler processes the
coding.

There are three solutions:

1. Place the following lines before and after the runtime compiler coding so that aprepro

104



will copy the input lines to the output exactly as they are written:

${VERBATIM(ON)}
... runtime compiler coding ...

${VERBATIM(OFF)}

2. Omit the verbatim commands, but put the curly braces into string expressions that
will be processed by aprepro. Make the following substitutions:

{ -> {"{"}
} -> {"}"}

The outer pair of opening and closing braces will be processed by aprepro, but the
inner brace in quotes will be sent as a string to the output deck.

3. A backslash can also be placed in front of curly braces. This will tell APREPRO to
ignore the curly brace. The RTC parser knows to ignore the backslash but not the
curly brace. This method will work regardless of whether aprepro is run on the input
deck or not.

For instance,

${VERBATIM(ON)}
user defined initial condition, density, block 5
"
field[0] = 100.0;
if(coord[0] > 0.0){
double distance = sqrt ((coord[0]^2) + (coord[1]^2) + (coord[2]^2));
field[0] = field[0] + distance;

}
"
${VERBATIM(OFF)}

or it could be written as,

user defined initial condition, density, block 5
"
field[0] = 100.0;
if(coord[0] > 0.0) {"{"}
double distance = sqrt ((coord[0]^2) + (coord[1]^2) + (coord[2]^2));
field[0] = field[0] + distance;

{"}"}
"
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or it could be written as,

user defined initial condition, density, block 5
"
field[0] = 100.0;
if(coord[0] > 0.0) \{
double distance = sqrt ((coord[0]^2) + (coord[1]^2) + (coord[2]^2));
field[0] = field[0] + distance;

\}
"

E.3 Using RTC and ALEGRA Functions

Another useful feature is the ability to call alegra functions from within the RTC (see
Section 6.2 on page 52). All user-defined alegra functions are registered with the RTC and
any tabular data can be read and interpolated. The alegra function is accessed through
the RTC function interface Function_Evaluate(real,int,int). The first real argument
is the abscissa value at which to evaluate the function. The second int argument is the
function-id number. The third int argument is the function evaluation type. The value 0
will return the function ordinate value, and the value 1 will return the function derivative
value.

The following example illustrates the use of the alegra functions within the RTC lan-
guage in the context of a user defined initial condition.

user defined initial condition, density, block 1,
" double scale = 2.49692e-06 / 2.5126e-06;
double dens = Function_Evaluate(coord[0],11,0);
field[0] = dens * scale ; "

end

F Templates for Hybrid Meshes

The following is a starting template for generating an unstructured mesh wrapped with
structured hex which can couple with STDEM, using Cubit 15.2 or later. This example
creates a simple spherical scatterer.

reset
$ Scattering sphere
create sphere radius 0.005
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$ PW launcher and total/scattered field boundary sphere (could be any shape)
create sphere radius 0.015

$ Size of wrapper box
${wsize=0.04}

$ Wrapper box
brick x {wsize} y {wsize} z {wsize}

$ Mesh delta
${dx=.005}

$ 2-cell thick hex wrapper
brick x {wsize+4.*dx} y {wsize+4.*dx} z {wsize+4.*dx}

${zshift = 0.}
move vol all z {zshift}

chop vol 4 with vol 3
chop vol 5 with vol 2
chop vol 7 with vol 1

webcut vol 6 with sheet extended from surf 3
webcut vol 11 with sheet extended from surf 4

imprint vol all
merge all

vol 6 11 12 size {dx}

surf 24 26 scheme map
mesh surf 24 26
vol 6 scheme sweep source surf 24 target surf 26
mesh vol 6

surf 38 40 scheme map
mesh surf 38 40
vol 12 scheme sweep source surf 38 target surf 40
mesh vol 12

vol 11 scheme sweep source surf 27 target surf 32
mesh vol 11

vol 8 9 10 scheme tetmesh
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surf 3 to 8 scheme map
mesh surf 3 to 8

vol 8 9 10 size {dx}

mesh vol 8 9 10
merge all

block 1 vol 9 10
block 2 vol 8
block 3 vol 6 11 12

sideset 1 surf 1 wrt vol 10
sideset 2 surf 2 wrt vol 10
sideset 3 surf 3 to 8

export mesh "meshHybrid.gen" overwrite

The following is a starting template for generating the structured mesh using the Quick-
silver preprocessor Mercury.

^char comment #

^ifndef nproc then
^def nproc 1

^endif
^if $nproc gt 1 then
PROCESSORS $nproc no-edge-connect

^endif

^define dx 5.0e-3
^define dy 5.0e-3
^define dz 5.0e-3

^define nx 16
^define ny 16
^define nz 16

^define ztrans 0.

^define xmax $(nx*dx/2)
^define xmin -$xmax
^define ymax $(ny*dy/2)
^define ymin -$ymax
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^define zmax $(nz*dz/2)
^define zmin -$zmax

^define npml 12
^define npmlx $npml
^define npmly $npml
^define npmlz $npml

^define xminp $(xmin - npmlx*dx)
^define xmaxp $(xmax + npmlx*dx)
^define yminp $(ymin - npmly*dy)
^define ymaxp $(ymax + npmly*dy)
^define zminp $(zmin - npmlz*dz)
^define zmaxp $(zmax + npmlz*dz)

SYSTEM CARTESIAN
BLOCK $xmin $ymin $zmin $xmax $ymax $zmax
GRID 1 I $xmin $nx $dx 0.0
GRID 1 J $ymin $ny $dy 0.0
GRID 1 K $zmin $nz $dz 0.0

BLOCK pml_block1 $xminp $yminp $zminp $xmin $ymaxp $zmaxp # xmin:full y & z
BLOCK pml_block2 $xmax $yminp $zminp $xmaxp $ymaxp $zmaxp # xmax:full y & z
BLOCK pml_block3 $xmin $yminp $zminp $xmax $ymin $zmaxp # ymin:full z
BLOCK pml_block4 $xmin $ymax $zminp $xmax $ymaxp $zmaxp # ymax:full z
BLOCK pml_block5 $xmin $ymin $zminp $xmax $ymax $zmin # zmin
BLOCK pml_block6 $xmin $ymin $zmax $xmax $ymax $zmaxp # zmax

GRID pml_block1 I $xminp $npmlx $dx 0.0
GRID pml_block2 I $xmax $npmlx $dx 0.0
GRID pml_block3 J $yminp $npmly $dy 0.0
GRID pml_block4 J $ymax $npmly $dy 0.0
GRID pml_block5 K $zminp $npmlz $dz 0.0
GRID pml_block6 K $zmax $npmlz $dz 0.0

^# define sigma(x) function

^define delta $dx
^define smax $(1.0/(150.0 * 3.14159 * delta))
^define sfact $(smax/8.854e-12)
^define funpar [$(4*npmlx+4)]

^# xmin section

^define ifun 0
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^define funpar[$ifun] $(xminp-dx)
^define funpar[$(ifun+1)] $sfact
^define ifun $(ifun+2)
^define x1 $(xmin-dx)
^for i 0 $(npmlx-2)
^define x $(xminp + i*dx)
^define u $((x1-x)/(dx+x1-xminp))
^define funpar[$ifun] $x
^define funpar[$(ifun+1)] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor

^# center section
^define funpar[$ifun] $x1
^define funpar[$ifun+1] 0.0
^define funpar[$ifun+2] $(xmax+dx)
^define funpar[$ifun+3] 0.0
^define ifun $(ifun+4)

# xmax section
^define x0 $(xmax+dx)
^for i 1 $(npmlx-1)
^define x $(x0 + i*dx)
^define u $((x-x0)/(dx+xmaxp-x0))
^define funpar[$ifun] $x
^define funpar[$ifun+1] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor
^define funpar[$ifun] $(xmaxp+dx)
^define funpar[$(ifun+1)] $sfact

FUNCTION 0 $(xminp - delta) $(xmaxp + delta) bowl $funpar

^# define sigma(y) function

^define delta $dy
^define smax $(1.0/(150.0 * 3.14159 * delta))
^define sfact $(smax/8.854e-12)
^define funpar [$(4*npmly+4)]

^# ymin section

^define ifun 0
^define funpar[$ifun] $(yminp-dy)
^define funpar[$(ifun+1)] $sfact
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^define ifun $(ifun+2)
^define y1 $(ymin-dy)
^for i 0 $(npmly-2)
^define y $(yminp + i*dy)
^define u $((y1-y)/(dy+y1-yminp))
^define funpar[$ifun] $y
^define funpar[$(ifun+1)] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor

^# center section
^define funpar[$ifun] $y1
^define funpar[$ifun+1] 0.0
^define funpar[$ifun+2] $(ymax+dy)
^define funpar[$ifun+3] 0.0
^define ifun $(ifun+4)

# ymax section
^define y0 $(ymax+dy)
^for i 1 $(npmly-1)
^define y $(y0 + i*dy)
^define u $((y-y0)/(dy+ymaxp-y0))
^define funpar[$ifun] $y
^define funpar[$ifun+1] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor
^define funpar[$ifun] $(ymaxp+dy)
^define funpar[$(ifun+1)] $sfact

FUNCTION 0 $(yminp - delta) $(ymaxp + delta) bowly $funpar

^# define sigma(z) function

^define delta $dz
^define smax $(1.0/(150.0 * 3.14159 * delta))
^define sfact $(smax/8.854e-12)
^define funpar [$(4*npmlz+4)]

^# zmin section

^define ifun 0
^define funpar[$ifun] $(zminp-dz)
^define funpar[$(ifun+1)] $sfact
^define ifun $(ifun+2)
^define z1 $(zmin-dz)
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^for i 0 $(npmlz-2)
^define z $(zminp + i*dz)
^define u $((z1-z)/(dz+z1-zminp))
^define funpar[$ifun] $z
^define funpar[$(ifun+1)] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor

^# center section
^define funpar[$ifun] $z1
^define funpar[$ifun+1] 0.0
^define funpar[$ifun+2] $(zmax+dz)
^define funpar[$ifun+3] 0.0
^define ifun $(ifun+4)

# zmax section
^define z0 $(zmax+dz)
^for i 1 $(npmlz-1)
^define z $(z0 + i*dz)
^define u $((z-z0)/(dz+zmaxp-z0))
^define funpar[$ifun] $z
^define funpar[$ifun+1] $(sfact*u^2)
^define ifun $(ifun+2)

^endfor
^define funpar[$ifun] $(zmaxp+dz)
^define funpar[$(ifun+1)] $sfact

FUNCTION 0 $(zminp - delta) $(zmaxp + delta) bowlz $funpar

^define dtcour $(1.0/sqrt(1/dx^2 + 1/dy^2 + 1/dz^2) / 3.0e8)
^define dt $(0.9*dtcour)
TIMESTEP $dt

# material numbers (1-dummy, 2-ground, 3-vacuum)

CONDUCTOR CONFORMAL 0.0 0.0 0.0 $dx $dy $dz dummy

PEC $xminp $yminp $zminp $xminp $ymaxp $zmaxp ground
PEC $xmaxp $yminp $zminp $xmaxp $ymaxp $zmaxp ground
PEC $xminp $yminp $zminp $xmaxp $yminp $zmaxp ground
PEC $xminp $ymaxp $zminp $xmaxp $ymaxp $zmaxp ground
PEC $xminp $yminp $zminp $xmaxp $ymaxp $zminp ground
PEC $xminp $yminp $zmaxp $xmaxp $ymaxp $zmaxp ground
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The following is the resulting emphasis.inp file created using the above template with
Mercury.

TITLE
emphasis

TERMINATION CYCLE= 0
EMIT HISPLT, CYCLE INTERVAL= 1 FROM TIME 8.6603E-12 TO 8.6603E-04
STRUCTURED TD ELECTROMAGNETICS
MESH, PFF
FILE="emphasis.pff"

END
FIELD SOLVER, EXPLICIT
CONSTANT TIME STEP= 8.66025E-12
FUNCTION 1
0.00000E+00 0.00000E+00
1.00000E+30 0.00000E+00

END
FUNCTION 2
0.00000E+00 1.00000E+00
1.00000E+30 1.00000E+00

END
FUNCTION 3
-1.05000E-01 4.79347E+10
-1.00000E-01 4.02785E+10
-9.50000E-02 3.32880E+10
-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
-5.00000E-02 3.32880E+08
-4.50000E-02 0.00000E+00
4.50000E-02 0.00000E+00
5.00000E-02 3.32880E+08
5.50000E-02 1.33152E+09
6.00000E-02 2.99592E+09
6.50000E-02 5.32607E+09
7.00000E-02 8.32201E+09
7.50000E-02 1.19837E+10
8.00000E-02 1.63111E+10
8.50000E-02 2.13043E+10
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9.00000E-02 2.69633E+10
9.50000E-02 3.32880E+10
1.00000E-01 4.02785E+10
1.05000E-01 4.79347E+10

END
FUNCTION 4
-1.05000E-01 4.79347E+10
-1.00000E-01 4.02785E+10
-9.50000E-02 3.32880E+10
-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
-5.00000E-02 3.32880E+08
-4.50000E-02 0.00000E+00
4.50000E-02 0.00000E+00
5.00000E-02 3.32880E+08
5.50000E-02 1.33152E+09
6.00000E-02 2.99592E+09
6.50000E-02 5.32607E+09
7.00000E-02 8.32201E+09
7.50000E-02 1.19837E+10
8.00000E-02 1.63111E+10
8.50000E-02 2.13043E+10
9.00000E-02 2.69633E+10
9.50000E-02 3.32880E+10
1.00000E-01 4.02785E+10
1.05000E-01 4.79347E+10

END
FUNCTION 5
-1.05000E-01 4.79347E+10
-1.00000E-01 4.02785E+10
-9.50000E-02 3.32880E+10
-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
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-5.00000E-02 3.32880E+08
-4.50000E-02 0.00000E+00
4.50000E-02 0.00000E+00
5.00000E-02 3.32880E+08
5.50000E-02 1.33152E+09
6.00000E-02 2.99592E+09
6.50000E-02 5.32607E+09
7.00000E-02 8.32201E+09
7.50000E-02 1.19837E+10
8.00000E-02 1.63111E+10
8.50000E-02 2.13043E+10
9.00000E-02 2.69633E+10
9.50000E-02 3.32880E+10
1.00000E-01 4.02785E+10
1.05000E-01 4.79347E+10

END
ELECTRICAL CONDUCTIVITY THRESHOLD= 1.0e6

END

MATERIAL 1 dummy
MODEL= 1

END
MATERIAL 2 ground
MODEL= 1

END
MATERIAL 3 vacuum
MODEL= 3

END
MODEL 1 SIMPLE ELECTRICAL
EPS= 1.0000E+00
MU= 1.0000E+00
SIGMA= 1.0000E+07

END
MODEL 3 SIMPLE ELECTRICAL
EPS= 0.0000E+00
MU= 1.0000E+00
SIGMA= 0.0000E+00

END

EXIT

The following is a complete EMPHASIS input file for this sphere scattering problem.

TITLE
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Planewave scattering from a PEC sphere w/far-field

DEBUG MODE, CONNECTIVITY=1

HYBRID TD ELECTROMAGNETICS

$-------------------------------- UTDEM ---------------------------------

MESH, GENESIS
FILE = "hpwscatterHybrid.gen"

END

FORMULATION, SECOND ORDER
HEX MASS LUMP = yes
WRAPPER, SIDESET 3

BLOCK 1 $ total
MATERIAL 1

END
BLOCK 2 $ scattered/wrapper
MATERIAL 1

END
BLOCK 100002 $ pyramid
MATERIAL 1

END
BLOCK 3 $ hex
MATERIAL 1

END

PEC BC, SIDESET 1

SURFACE CURRENT, SIDESET 1

PLANE WAVE SOURCE, SIDESET 2, BLOCK 1 FUNCTION 101
POLARIZATION, X=1.0 Y=0.0 Z=0.0, PROPDIR, X=0.0 Y=0.0 Z=1.0

TRACER POINTS
EULERIAN TRACER 1 X=0.0 Y=0.0 Z=-10.0e-3
EULERIAN TRACER 2 X=0.0 Y=0.0 Z=-17.5e-3

END

FUNCTION 101 GAUSSIAN, SCALE=1.0 WIDTH=0.23263e-9 SHIFT=0.73048e-9

GRADUAL STARTUP FACTOR 1.0
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$-------------------------------- STDEM ---------------------------------

MESH, PFF
FILE="emphasis.pff"

END

$ DIELECTRIC ALGORITHM, CONSTANT=1.0
ELECTRICAL CONDUCTIVITY THRESHOLD=1e6

SURFACE FIELD CHECK, FIELDS=EB
FIELD SOLVER, PML, PROFILE=X, FUNCTION=201 Y, FUNCTION=201 Z, FUNCTION=201
BLOCK=1,2,3,4,5,6

FUNCTION 201
-1.05000E-01 4.79347E+10
-1.00000E-01 4.02785E+10
-9.50000E-02 3.32880E+10
-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
-5.00000E-02 3.32880E+08
-4.50000E-02 0.00000E+00
4.50000E-02 0.00000E+00
5.00000E-02 3.32880E+08
5.50000E-02 1.33152E+09
6.00000E-02 2.99592E+09
6.50000E-02 5.32607E+09
7.00000E-02 8.32201E+09
7.50000E-02 1.19837E+10
8.00000E-02 1.63111E+10
8.50000E-02 2.13043E+10
9.00000E-02 2.69633E+10
9.50000E-02 3.32880E+10
1.00000E-01 4.02785E+10
1.05000E-01 4.79347E+10

END

HISTORY FIELD, LABEL="EI_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_I,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="EJ_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_J,

117



SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035
HISTORY FIELD, LABEL="EK_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_K,

SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BI_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_I,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BJ_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_J,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BK_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_K,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

FAR FIELD, SEGMENT=-0.035 -0.035 -0.035 0.035 0.035 0.035, PHASECENTER=0.0 0.0 -0.015, LOOKANGLES 180. 0. 0. 0. 90. 180.
FAR FIELD PATTERN, PHISTART=0., THETASTART=-180., THETAEND=180., NUMTHETA=361, FREQUENCIES 1.e8 2.e8 3.e8 4.e8 5.e8
FAR FIELD PATTERN, PHISTART=90., THETASTART=-180., THETAEND=180., NUMTHETA=361, FREQUENCIES 1.e8 2.e8 3.e8 4.e8 5.e8

$------------------------------------------------------------------------

CONSTANT TIME STEP 4.0e-12

END

UNITS = si

TERMINATION TIME 2000e-12

AZTEC
SOLVER = cg
PRECOND = jacobi
OUTPUT = none
TOL = 1.0e-8
POLYNOMIAL ORDER = 1

END

$
$------------------------------------------------------------------------
$ P L O T T I N G
$------------------------------------------------------------------------
$
EMIT SCREEN, CYCLE INTERVAL = 1

EMIT HISPLT, CYCLE INTERVAL = 1
HISTORY PLOT VARIABLES
ELECTRIC FIELD
MAGNETIC FIELD

END
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EMIT PLOT, TIME INTERVAL = 8e-12, FROM TIME 160e-12 TO 2000e-12
PLOT VARIABLES
NO DEFAULT OUTPUT
ALL REGION VARIABLES
ELECTRIC FIELD
MAGNETIC FIELD
SURFACE CURRENT DEN, AS "JS"

END

$
$------------------------------------------------------------------------
$ M A T E R I A L S
$------------------------------------------------------------------------
$

MATERIAL 1 vacuum
MODEL = 1

END

MATERIAL 2 cond
MODEL = 2

END

MATERIAL 3 vacuum
MODEL = 1

END

MODEL 1 SIMPLE ELECTRICAL
EPS = 1.0
MU = 1.0
SIGMA = 0.0

END

MODEL 2 SIMPLE ELECTRICAL
EPS = 1.0
MU = 1.0
SIGMA = 1e7

END

EXIT
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